Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 780: 146670, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34030324

ABSTRACT

It is increasingly clear that increases in dissolved organic carbon in upland waters in recent decades have often been dominated by acid deposition, but reasons for substantial variation in rates of change remain unclear. This paper focuses on the extent to which spatial properties, such as variation in soil properties, atmospheric deposition and climate, affect the sensitivity of DOC concentrations in soil water. The purpose is to i) examine evidence for differences in site average concentrations and trends in soil water DOC between sites with contrasting ecosystem properties, i.e. vegetation cover and soil type, and ii) identify the wider combination of site characteristics that best explain variation in these DOC metrics between sites. We collated soil water and deposition chemistry, soil chemistry and meteorological data from 15 long-term UK monitoring sites (1992-2010) covering a range of soils, vegetation, climate and acid deposition levels. Mineral soils under forests showed the greatest range of long-term mean DOC concentrations and trends. Regression analysis indicated that acid and sea-salt deposition, and soil sensitivity to acidification were the factors most strongly associated with spatial variation in mean DOC concentrations. Spatial variation in DOC trends were best explained by Al saturation and water flux. Overall, the sensitivity of DOC release from soil to changes in pollutant deposition could be related to the type of vegetation cover and soils chemistry properties, such as Al saturation, divalent base cation content and hydrological regime. The identification of the ecosystem properties that appear most influential in modifying DOC production and responses to long-term drivers, helps elucidate potential mechanistic explanations for differences in DOC dynamics across seemingly similar ecosystems, and points to the importance of DOC mobility in regulating its dynamics.

2.
Sci Total Environ ; 766: 142613, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33097258

ABSTRACT

Estimates of peatland carbon fluxes based on remote sensing data are a useful addition to monitoring methods in these remote and precious ecosystems, but there are questions as to whether large-scale estimates are reliable given the small-scale heterogeneity of many peatlands. Our objective was to consider the reliability of models based on Earth Observations for estimating ecosystem photosynthesis at different scales using the Forsinard Flows RSPB reserve in Northern Scotland as our study site. Three sites across the reserve were monitored during the growing season of 2017. One site is near-natural blanket bog, and the other two are at different stages of the restoration process after removal of commercial conifer forestry. At each site we measured small (flux chamber) and landscape scale (eddy covariance) CO2 fluxes, small scale spectral data using a handheld spectrometer, and obtained corresponding satellite data from MODIS. The variables influencing GPP at small scale, including microforms and dominant vegetation species, were assessed using exploratory factor analysis. A GPP model using land surface temperature and a measure of greenness from remote sensing data was tested and compared to chamber and eddy covariance CO2 fluxes; this model returned good results at all scales (Pearson's correlations of 0.57 to 0.71 at small scale, 0.76 to 0.86 at large scale). We found that the effect of microtopography on GPP fluxes at the study sites was spatially and temporally inconsistent, although connected to water content and vegetation species. The GPP fluxes measured using EC were larger than those using chambers at all sites, and the reliability of the TG model at different scales was dependent on the measurement methods used for calibration and validation. This suggests that GPP measurements from remote sensing are robust at all scales, but that the methods used for calibration and validation will impact accuracy.

3.
Sci Total Environ ; 703: 135585, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-31767326

ABSTRACT

Over the past 30-40 years, dissolved organic carbon (DOC) concentrations have increased in soil solutions and surface waters in many acid-sensitive areas of Europe and North America. This has been linked to recovery from acidification in response to decreasing levels of atmospheric pollution. Evidence from radiocarbon dating suggests that DOC in surface waters is typically derived from recently photosynthesised organic matter such as plant litter and exudates, yet there is little information on the pH-sensitivity of organic matter solubility, or its decomposition, in litter layers and in different organic soils. Therefore the purpose of this study was to determine a) the sensitivity of DOC to acidity in different surface layers and soil types, in order to b) improve understanding of the key sources contributing to the increasing DOC trend. Such information is vital for understanding site specific characteristics contributing to inconsistencies in DOC release between catchments, and for improving predictions of carbon fluxes and budgets. Based on data collected at four established field pH-manipulation experiments in upland areas of the United Kingdom, we examined the sources, composition and acid-sensitivity of DOC export from the litter and organic soils. We found that litter generated nearly three times more DOC than the organic soils, consistent with radiocarbon evidence that recent plant inputs are a major source of DOC. Furthermore, litter derived DOC had lower specific ultraviolet light absorbance (SUVA) than organic soil DOC, suggesting greater biodegradability, and was not acid sensitive. In contrast, organic soil DOC concentrations were more strongly related to experimentally manipulated pH, implying that the mobility of this DOC may be subject to physicochemical rather than biotic controls. Our results suggest that physicochemically mediated controls on organic matter solubility may be a key driver behind the widely observed increases in surface water DOC in areas undergoing recovery from acidification.

4.
Sci Rep ; 9(1): 18275, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31798011

ABSTRACT

Mangrove forests capture and store exceptionally large amounts of carbon and are increasingly recognised as an important ecosystem for carbon sequestration. Yet land-use change in the tropics threatens this ecosystem and its critical 'blue carbon' (carbon stored in marine and coastal habitats) stores. The expansion of shrimp aquaculture is among the major causes of mangrove loss globally. Here, we assess the impact of mangrove to shrimp pond conversion on ecosystem carbon stocks, and carbon losses and gains over time after ponds are abandoned. Our assessment is based on an intensive field inventory of carbon stocks at a coastal setting in Thailand. We show that although up to 70% of ecosystem carbon is lost when mangroves are converted to shrimp ponds, some abandoned ponds contain deep mangrove soils (>2.5 m) and large carbon reservoirs exceeding 865 t carbon per hectare. We also found a positive recovery trajectory for carbon stocks in the upper soil layer (0-15 cm) of a chronosequence of abandoned ponds, associated with natural mangrove regeneration. Our data suggest that mangrove carbon pools can rebuild in abandoned ponds over time in areas exposed to tidal flushing.

5.
J Cell Biol ; 217(9): 3057-3070, 2018 09 03.
Article in English | MEDLINE | ID: mdl-29941476

ABSTRACT

The plane of cell division is defined by the final position of the mitotic spindle. The spindle is pulled and rotated to the correct position by cortical dynein. However, it is unclear how the spindle's rotational center is maintained and what the consequences of an equatorially off centered spindle are in human cells. We analyzed spindle movements in 100s of cells exposed to protein depletions or drug treatments and uncovered a novel role for MARK2 in maintaining the spindle at the cell's geometric center. Following MARK2 depletion, spindles glide along the cell cortex, leading to a failure in identifying the correct division plane. Surprisingly, spindle off centering in MARK2-depleted cells is not caused by excessive pull by dynein. We show that MARK2 modulates mitotic microtubule growth and length and that codepleting mitotic centromere-associated protein (MCAK), a microtubule destabilizer, rescues spindle off centering in MARK2-depleted cells. Thus, we provide the first insight into a spindle-centering mechanism needed for proper spindle rotation and, in turn, the correct division plane in human cells.


Subject(s)
Mitosis/physiology , Protein Serine-Threonine Kinases/metabolism , Spindle Apparatus/metabolism , Cell Line, Tumor , Dyneins/metabolism , HeLa Cells , Humans , Microtubules/metabolism , RNA Interference , RNA, Small Interfering/genetics
6.
Sci Rep ; 6: 36751, 2016 11 18.
Article in English | MEDLINE | ID: mdl-27857210

ABSTRACT

Peatland ecosystem services include drinking water provision, flood mitigation, habitat provision and carbon sequestration. Dissolved organic carbon (DOC) removal is a key treatment process for the supply of potable water downstream from peat-dominated catchments. A transition from peat-forming Sphagnum moss to vascular plants has been observed in peatlands degraded by (a) land management, (b) atmospheric deposition and (c) climate change. Here within we show that the presence of vascular plants with higher annual above-ground biomass production leads to a seasonal addition of labile plant material into the peatland ecosystem as litter recalcitrance is lower. The net effect will be a smaller litter carbon pool due to higher rates of decomposition, and a greater seasonal pattern of DOC flux. Conventional water treatment involving coagulation-flocculation-sedimentation may be impeded by vascular plant-derived DOC. It has been shown that vascular plant-derived DOC is more difficult to remove via these methods than DOC derived from Sphagnum, whilst also being less susceptible to microbial mineralisation before reaching the treatment works. These results provide evidence that practices aimed at re-establishing Sphagnum moss on degraded peatlands could reduce costs and improve efficacy at water treatment works, offering an alternative to 'end-of-pipe' solutions through management of ecosystem service provision.


Subject(s)
Soil/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification , Drinking Water/analysis , Organic Chemicals/isolation & purification , Seasons , Solutions , Sphagnopsida/chemistry , Wetlands
7.
Glob Chang Biol ; 22(3): 1008-28, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26301476

ABSTRACT

Soils are subject to varying degrees of direct or indirect human disturbance, constituting a major global change driver. Factoring out natural from direct and indirect human influence is not always straightforward, but some human activities have clear impacts. These include land-use change, land management and land degradation (erosion, compaction, sealing and salinization). The intensity of land use also exerts a great impact on soils, and soils are also subject to indirect impacts arising from human activity, such as acid deposition (sulphur and nitrogen) and heavy metal pollution. In this critical review, we report the state-of-the-art understanding of these global change pressures on soils, identify knowledge gaps and research challenges and highlight actions and policies to minimize adverse environmental impacts arising from these global change drivers. Soils are central to considerations of what constitutes sustainable intensification. Therefore, ensuring that vulnerable and high environmental value soils are considered when protecting important habitats and ecosystems, will help to reduce the pressure on land from global change drivers. To ensure that soils are protected as part of wider environmental efforts, a global soil resilience programme should be considered, to monitor, recover or sustain soil fertility and function, and to enhance the ecosystem services provided by soils. Soils cannot, and should not, be considered in isolation of the ecosystems that they underpin and vice versa. The role of soils in supporting ecosystems and natural capital needs greater recognition. The lasting legacy of the International Year of Soils in 2015 should be to put soils at the centre of policy supporting environmental protection and sustainable development.


Subject(s)
Conservation of Natural Resources , Ecosystem , Environmental Pollution/adverse effects , Soil
8.
Can Vet J ; 56(4): 408-11, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25829563

ABSTRACT

Hereditary hyperplastic gingivitis is a progressive growth of gingival tissues in foxes resulting in dental encapsulation. It is an autosomal recessive condition displaying a gender-biased penetrance, with an association with superior fur quality. This disease has been primarily described in European farmed foxes. Here we document its emergence in Canada.


Gingivite hyperplasique héréditaire chez le renard argenté d'élevage d'Amérique du Nord(Vulpes vulpes). La gingivite hyperplasique héréditaire est une croissance progressive des tissus gingivaux chez les renards qui produit une encapsulation dentaire. Il s'agit d'une affection récessive autosomique qui manifeste une pénétration privilégiant un sexe et qui présente une association avec une qualité de fourrure supérieure. Cette maladie a été principalement décrite chez les renards d'élevage européen. Nous documentons ici son émergence au Canada.(Traduit par Isabelle Vallières).


Subject(s)
Foxes , Genetic Predisposition to Disease , Gingivitis/veterinary , Hyperplasia/veterinary , Animals , Gingivitis/genetics , Gingivitis/pathology , Hyperplasia/genetics , Hyperplasia/pathology
9.
Rev Sci Instrum ; 86(1): 013707, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25638090

ABSTRACT

We provide an evaluation for an electrically tunable lens (ETL), combined with a microscope system, from the viewpoint of tracking intracellular protein complexes. We measured the correlation between the quantitative axial focus shift and the control current for ETL, and determined the stabilization time for refocusing to evaluate the electrical focusing behaviour of our system. We also confirmed that the change of relative magnification by the lens and associated resolution does not influence the ability to find intracellular targets. By applying the ETL system to observe intracellular structures and protein complexes, we confirmed that this system can obtain 10 nm order z-stacks, within video rate, while maintaining the quality of images and that this system has sufficient optical performance to detect the molecules.


Subject(s)
Electrical Equipment and Supplies , Intracellular Space/metabolism , Lenses , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Proteins/metabolism , Computer Simulation , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Imaging, Three-Dimensional/instrumentation , Imaging, Three-Dimensional/methods , Microtubules/metabolism , Pattern Recognition, Automated , Video Recording/instrumentation , Video Recording/methods
10.
Genome ; 57(8): 449-57, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25469536

ABSTRACT

Hereditary hyperplastic gingivitis (HHG) is an autosomal recessive condition found predominantly in farmed silver foxes, first documented in Europe in the 1940s. Hereditary gingival fibromatosis (HGF) is an analogous condition occurring in humans. HGF has a heterogeneous aetiology with emphasis placed on the autosomal dominant forms of inheritance for which there are three known loci: HGF1, HGF2, and HGF3. Among these, only one causative mutation has been determined, in the Son of sevenless homolog 1 (SOS1) gene. The goal of this study was to explore potential molecular or cellular mechanisms underlying HHG by analysis of global gene expression patterns from Affymetrix Canine 2.0 microarrays cross-referenced against candidate genes within the human loci. We conclude that the SOS1 gene involved in HGF1 is not significantly up-regulated in HHG. However, the structurally and functionally similar SOS2 gene is up-regulated in affected foxes, and we propose this as a candidate gene for HHG. At HGF2 we identify RASA1 (rat sarcoma viral p21 protein activator 1) as a candidate gene for HHG, as it is up-regulated in affected foxes and is involved in MAPK signalling. From comparison to the genes within the HGF3 locus, we find evidence for a role of androgens in HHG phenotype severity by differential up-regulation of SRD5A2 in HHG-affected foxes. We hypothesize that the putative mutation occurs upstream of RAS in the extracellular signal-regulated kinase component of MAPK signalling.


Subject(s)
Foxes/genetics , Gene Expression Regulation/physiology , Gingival Hyperplasia/genetics , Gingival Hyperplasia/veterinary , Son of Sevenless Proteins/genetics , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics , Animals , Genes, Recessive , Genetic Association Studies , Microarray Analysis/veterinary , Pedigree , Reverse Transcriptase Polymerase Chain Reaction , Son of Sevenless Proteins/metabolism , Transcriptome , p120 GTPase Activating Protein/genetics
11.
Genetica ; 142(6): 517-23, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25377643

ABSTRACT

Hereditary hyperplastic gingivitis (HHG) is an autosomal recessive disease that presents with progressive gingival proliferation in farmed silver foxes. Hereditary gingival fibromatosis (HGF) is an analogous condition in humans that is genetically heterogeneous with several known autosomal dominant loci. For one locus the causative mutation is in the Son of sevenless homologue 1 (SOS1) gene. For the remaining loci, the molecular mechanisms are unknown but Ras pathway involvement is suspected. Here we compare sequences for the SOS1 gene, and two adjacent genes in the Ras pathway, growth receptor bound protein 2 (GRB2) and epidermal growth factor receptor (EGFR), between HHG-affected and unaffected foxes. We conclude that the known HGF causative mutation does not cause HHG in foxes, nor do the coding regions or intron-exon boundaries of these three genes contain any candidate mutations for fox gum disease. Patterns of molecular evolution among foxes and other mammals reflect high conservation and strong functional constraints for SOS1 and GRB2 but reveal a lineage-specific pattern of variability in EGFR consistent with mutational rate differences, relaxed functional constraints, and possibly positive selection.


Subject(s)
ErbB Receptors/genetics , Fibromatosis, Gingival/genetics , Fibromatosis, Gingival/veterinary , Foxes/genetics , GRB2 Adaptor Protein/genetics , SOS1 Protein/genetics , Animals , DNA Mutational Analysis , Evolution, Molecular , Mutation Rate
12.
Water Res ; 67: 66-76, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25262551

ABSTRACT

Uncertainty regarding changes in dissolved organic carbon (DOC) quantity and quality has created interest in managing peatlands for their ecosystem services such as drinking water provision. The evidence base for such interventions is, however, sometimes contradictory. We performed a laboratory climate manipulation using a factorial design on two dominant peatland vegetation types (Calluna vulgaris and Sphagnum Spp.) and a peat soil collected from a drinking water catchment in Exmoor National Park, UK. Temperature and rainfall were set to represent baseline and future conditions under the UKCP09 2080s high emissions scenario for July and August. DOC leachate then underwent standard water treatment of coagulation/flocculation before chlorination. C. vulgaris leached more DOC than Sphagnum Spp. (7.17 versus 3.00 mg g(-1)) with higher specific ultraviolet (SUVA) values and a greater sensitivity to climate, leaching more DOC under simulated future conditions. The peat soil leached less DOC (0.37 mg g(-1)) than the vegetation and was less sensitive to climate. Differences in coagulation removal efficiency between the DOC sources appears to be driven by relative solubilisation of protein-like DOC, observed through the fluorescence peak C/T. Post-coagulation only differences between vegetation types were detected for the regulated disinfection by-products (DBPs), suggesting climate change influence at this scale can be removed via coagulation. Our results suggest current biodiversity restoration programmes to encourage Sphagnum Spp. will result in lower DOC concentrations and SUVA values, particularly with warmer and drier summers.


Subject(s)
Calluna/chemistry , Carbon/metabolism , Climate Change , Drinking Water/chemistry , Soil/chemistry , Sphagnopsida/chemistry , Water Purification/methods , Acetonitriles/metabolism , Chloroform/metabolism , Computer Simulation , Conservation of Natural Resources/methods , Fluorescence , Seasons
14.
Open Biol ; 4(6): 130108, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24898139

ABSTRACT

Chromosomal instability can arise from defects in chromosome-microtubule attachment. Using a variety of drug treatments, we show that TAO1 kinase is required for ensuring the normal congression of chromosomes. Depletion of TAO1 reduces the density of growing interphase and mitotic microtubules in human cells, showing TAO1's role in controlling microtubule dynamics. We demonstrate the aneugenic nature of chromosome-microtubule attachment defects in TAO1-depleted cells using an error-correction assay. Our model further strengthens the emerging paradigm that microtubule regulatory pathways are important for resolving erroneous kinetochore-microtubule attachments and maintaining the integrity of the genome, regardless of the spindle checkpoint status.


Subject(s)
Chromosomal Instability , Chromosomes/metabolism , MAP Kinase Kinase Kinases/metabolism , Chromosomes/genetics , HeLa Cells , Humans , Protein Serine-Threonine Kinases , Tumor Cells, Cultured
15.
J Sci Food Agric ; 94(12): 2362-71, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24425529

ABSTRACT

It is well known that atmospheric concentrations of carbon dioxide (CO2) (and other greenhouse gases) have increased markedly as a result of human activity since the industrial revolution. It is perhaps less appreciated that natural and managed soils are an important source and sink for atmospheric CO2 and that, primarily as a result of the activities of soil microorganisms, there is a soil-derived respiratory flux of CO2 to the atmosphere that overshadows by tenfold the annual CO2 flux from fossil fuel emissions. Therefore small changes in the soil carbon cycle could have large impacts on atmospheric CO2 concentrations. Here we discuss the role of soil microbes in the global carbon cycle and review the main methods that have been used to identify the microorganisms responsible for the processing of plant photosynthetic carbon inputs to soil. We discuss whether application of these techniques can provide the information required to underpin the management of agro-ecosystems for carbon sequestration and increased agricultural sustainability. We conclude that, although crucial in enabling the identification of plant-derived carbon-utilising microbes, current technologies lack the high-throughput ability to quantitatively apportion carbon use by phylogentic groups and its use efficiency and destination within the microbial metabolome. It is this information that is required to inform rational manipulation of the plant-soil system to favour organisms or physiologies most important for promoting soil carbon storage in agricultural soil.


Subject(s)
Carbon Cycle , Carbon Dioxide , Carbon , Greenhouse Effect , Plants , Soil Microbiology , Soil/chemistry , Agriculture , Atmosphere , Ecosystem
16.
PLoS One ; 6(9): e24504, 2011.
Article in English | MEDLINE | ID: mdl-21915344

ABSTRACT

Inhibitors of kappa B (IκBs) -α, -ß and -ε effect selective regulation of specific nuclear factor of kappa B (NF-κB) dimers according to cell lineage, differentiation state or stimulus, in a manner that is not yet precisely defined. Lymphocyte antigen receptor ligation leads to degradation of all three IκBs but activation only of subsets of NF-κB-dependent genes, including those regulated by c-Rel, such as anti-apoptotic CD40 and BAFF-R on B cells, and interleukin-2 (IL-2) in T cells. We report that pre-culture of a mouse T cell line with tumour necrosis factor-α (TNF) inhibits IL-2 gene expression at the level of transcription through suppressive effects on NF-κB, AP-1 and NFAT transcription factor expression and function. Selective upregulation of IκBε and suppressed nuclear translocation of c-Rel were very marked in TNF-treated, compared to control cells, whether activated via T cell receptor (TCR) pathway or TNF receptor. IκBε associated with newly synthesised c-Rel in activated cells and, in contrast to IκBα and -ß, showed enhanced association with p65/c-Rel in TNF-treated cells relative to controls. Studies in IκBε-deficient mice revealed that basal nuclear expression and nuclear translocation of c-Rel at early time-points of receptor ligation were higher in IκBε-/- T and B cells, compared to wild-type. IκBε-/- mice exhibited increased lymph node cellularity and enhanced basal thymidine incorporation by lymphoid cells ex vivo. IκBε-/- T cell blasts were primed for IL-2 expression, relative to wild-type. IκBε-/- splenic B cells showed enhanced survival ex vivo, compared to wild-type, and survival correlated with basal expression of CD40 and induced expression of CD40 and BAFF-R. Enhanced basal nuclear translocation of c-Rel, and upregulation of BAFF-R and CD40 occurred despite increased IκBα expression in IκBε-/- B cells. The data imply that regulation of these c-Rel-dependent lymphoid responses is a non-redundant function of IκBε.


Subject(s)
B-Lymphocytes/metabolism , I-kappa B Kinase/metabolism , Proto-Oncogene Proteins c-rel/metabolism , T-Lymphocytes/metabolism , Animals , Cell Line, Tumor , Cells, Cultured , Electrophoretic Mobility Shift Assay , Humans , I-kappa B Kinase/genetics , Immunoblotting , Immunoprecipitation , Interleukin-2/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Proto-Oncogene Proteins c-rel/genetics
17.
J Am Chem Soc ; 133(4): 1016-32, 2011 Feb 02.
Article in English | MEDLINE | ID: mdl-21158451

ABSTRACT

Charge transfer between metal ions occupying distinct crystallographic sublattices in an ordered material is a strategy to confer visible light absorption on complex oxides to generate potentially catalytically active electron and hole charge carriers. CaCu3Ti4O12 has distinct octahedral Ti4+ and square planar Cu2+ sites and is thus a candidate material for this approach. The sol−gel synthesis of high surface area CaCu3Ti4O12 and investigation of its optical absorption and photocatalytic reactivity with model pollutants are reported. Two gaps of 2.21 and 1.39 eV are observed in the visible region. These absorptions are explained by LSDA+U electronic structure calculations, including electron correlation on the Cu sites, as arising from transitions from a Cu-hybridized O 2p-derived valence band to localized empty states on Cu (attributed to the isolation of CuO4 units within the structure of CaCu3Ti4O12) and to a Ti-based conduction band. The resulting charge carriers produce selective visible light photodegradation of 4-chlorophenol (monitored by mass spectrometry) by Pt-loaded CaCu3Ti4O12 which is attributed to the chemical nature of the photogenerated charge carriers and has a quantum yield comparable with commercial visible light photocatalysts.

18.
Immunol Lett ; 118(1): 55-8, 2008 Jun 15.
Article in English | MEDLINE | ID: mdl-18396335

ABSTRACT

Experimental and clinical evidence for T cell involvement in the pathology of rheumatoid arthritis (RA) is compelling, and points to a local dysregulation of T cell function in the inflamed joint. Nitric oxide (NO) has been shown to regulate T cell function under physiological conditions, but overproduction of NO may contribute to lymphocyte dysfunction characteristic of RA. Several investigations in patients with RA have documented evidence of increased NO synthesis, but these studies have focused largely on macrophage-derived NO and its impact on innate immune and inflammatory responses. In this study, we set out to explore the contribution that T cells make to NO production. We find that T cells from RA patients produce >2.5 times more NO than healthy donor T cells (p<0.001). Although NO is an important physiological mediator of mitochondrial biogenesis, mitochondrial mass is similar in RA and control T cells. In contrast, increased NO production is associated with increased cytoplasmic Ca(2+) concentrations in RA T cells (p<0.001). In vitro treatment of human peripheral blood lymphocytes, or Jurkat cells with TNF increases NO production (p=0.006 and p=0.001, respectively), whilst infliximab treatment in RA patients decreases T cell derived NO production within 6 weeks of the first infusion (p=0.005). Together, these data indicate that TNF induced NO production in T lymphocytes may contribute to perturbations of immune homeostasis in RA.


Subject(s)
Arthritis, Rheumatoid/metabolism , Nitric Oxide/biosynthesis , T-Lymphocytes/metabolism , Arthritis, Rheumatoid/immunology , Calcium/metabolism , Cells, Cultured , Cytoplasm/metabolism , Humans
19.
Sci Total Environ ; 404(2-3): 308-15, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18076974

ABSTRACT

Hydrologic transport of dissolved organic carbon (DOC) from peat soils may differ to organo-mineral soils in how they responded to changes in flow, because of differences in soil profile and hydrology. In well-drained organo-mineral soils, low flow is through the lower mineral layer where DOC is absorbed and high flow is through the upper organic layer where DOC is produced. DOC concentrations in streams draining organo-mineral soils typically increase with flow. In saturated peat soils, both high and low flows are through an organic layer where DOC is produced. Therefore, DOC in stream water draining peat may not increase in response to changes in flow as there is no switch in flow path between a mineral and organic layer. To verify this, we conducted a high-resolution monitoring study of soil and stream water at an upland peat catchment in northern England. Our data showed a strong positive correlation between DOC concentrations at -1 and -5 cm depth and stream water, and weaker correlations between concentrations at -20 to -50 cm depth and stream water. Although near surface organic material appears to be the key source of stream water DOC in both peat and organo-mineral soils, we observed a negative correlation between stream flow and DOC concentrations instead of a positive correlation as DOC released from organic layers during low and high flow was diluted by rainfall. The differences in DOC transport processes between peat and organo-mineral soils have different implications for our understanding of long-term changes in DOC exports. While increased rainfall may cause an increase in DOC flux from peat due to an increase in water volume, it may cause a decrease in concentrations. This response is contrary to expected changes in DOC exports from organo-mineral soils, where increase rainfall is likely to result in an increase in flux and concentration.


Subject(s)
Carbon/analysis , Environmental Monitoring , Organic Chemicals/analysis , Soil Pollutants/analysis , Water Movements , Water Pollutants, Chemical/analysis , Carbon/chemistry , Carbon/metabolism , England , Organic Chemicals/chemistry , Soil Pollutants/chemistry , Solubility , Water Pollutants, Chemical/chemistry
20.
Sci Total Environ ; 404(2-3): 316-25, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18096207

ABSTRACT

In the United Kingdom, as in other regions of Europe and North America, recent decreases in surface water sulphate concentrations, due to reduced sulphur emissions, have coincided with marked increases in dissolved organic carbon (DOC) concentrations. Since many of the compounds comprising DOC are acidic, the resulting increases in organic acidity may have the potential to offset the benefits of a decrease in mineral (sulphate) acidity. To test this, we used a triprotic model of organic acid dissociation to estimate the proportional organic acid buffering of reduced mineral acidity as measured in the 22 lakes and streams monitored by the UK Acid Waters Monitoring Network. For an average non-marine sulphate decrease of 30 mueq l(-1) over 15 years from 1988-2003, we estimate that around 28% was counterbalanced by rising strong organic acids, 20% by rising alkalinity (partly attributable to an increase in weak organic acids), 11% by falling inorganic aluminium and 41% by falling non-marine base cations. The situation is complicated by a concurrent decrease in marine ion concentrations, and the impact this may have had on both DOC and acidity, but results clearly demonstrate that organic acid increases have substantially limited the amount of recovery from acidification (in terms of rising alkalinity and falling aluminium) that have resulted from reducing sulphur emissions. The consistency and magnitude of sulphate and organic acid changes are consistent with a causal link between the two, possibly due to the effects of changing acidity, ionic strength and aluminium concentrations on organic matter solubility. If this is the case, then organic acids can be considered effective but partial buffers to acidity change in organic soils, and this mechanism needs to be considered in assessing and modelling recovery from acidification, and in defining realistic reference conditions. However, large spatial variations in the relative magnitude of organic acid and sulphate changes, notably for low-deposition sites in northwestern areas where organic acid increases apparently exceed non-marine sulphate decreases, suggest that additional factors, such as changes in sea-salt deposition and climatic factors, may be required to explain the full magnitude of DOC increases in UK surface waters.


Subject(s)
Environmental Monitoring , Organic Chemicals/analysis , Water Pollutants, Chemical/analysis , Buffers , Carbon/analysis , Carbon/chemistry , Climate , Hydrogen-Ion Concentration , Organic Chemicals/chemistry , Solubility , Time Factors , United Kingdom , Water Movements , Water Pollutants, Chemical/chemistry , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...