Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem ; 2(1): 9-31, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35075451

ABSTRACT

Natural dyes and pigments offer incomparable diversity of structures and functionalities, making them an excellent source of inspiration for the design and development of synthetic chromophores with a myriad of emerging properties. Formed during maturation of red wines, pyranoanthocyanins are electron-deficient cationic pyranoflavylium dyes with broad absorption in the visible spectral region and pronounced chemical and photostability. Herein, we survey the optical and electrochemical properties of synthetic pyranoflavylium dyes functionalized with different electron-donating and electron-withdrawing groups, which vary their reduction potentials over a range of about 400 mV. Despite their highly electron-deficient cores, the exploration of pyranoflavyliums as photosensitizers has been limited to the "classical" n-type dye-sensitized solar cells (DSSCs) where they act as electron donors. In light of their electrochemical and spectroscopic properties, however, these biomimetic synthetic dyes should prove to be immensely beneficial as chromophores in p-type DSSCs, where their ability to act as photooxidants, along with their pronounced photostability, can benefit key advances in solar-energy science and engineering.

2.
Biomolecules ; 11(3)2021 03 15.
Article in English | MEDLINE | ID: mdl-33804209

ABSTRACT

Biological structure-function relationships offer incomparable paradigms for charge-transfer (CT) science and its implementation in solar-energy engineering, organic electronics, and photonics. Electrets are systems with co-directionally oriented electric dopes with immense importance for CT science, and bioinspired molecular electrets are polyamides of anthranilic-acid derivatives with designs originating from natural biomolecular motifs. This publication focuses on the synthesis of molecular electrets with ether substituents. As important as ether electret residues are for transferring holes under relatively high potentials, the synthesis of their precursors presents formidable challenges. Each residue in the molecular electrets is introduced as its 2-nitrobenzoic acid (NBA) derivative. Hence, robust and scalable synthesis of ether derivatives of NBA is essential for making such hole-transfer molecular electrets. Purdie-Irvine alkylation, using silver oxide, produces with 90% yield the esters of the NBA building block for iso-butyl ether electrets. It warrants additional ester hydrolysis for obtaining the desired NBA precursor. Conversely, Williamson etherification selectively produces the same free-acid ether derivative in one-pot reaction, but a 40% yield. The high yields of Purdie-Irvine alkylation and the selectivity of the Williamson etherification provide important guidelines for synthesizing building blocks for bioinspired molecular electrets and a wide range of other complex ether conjugates.


Subject(s)
Biomimetic Materials/chemistry , Biomimetic Materials/chemical synthesis , Alkylation , Ether/chemistry , Heating , Microwaves , Oxides/chemistry , Silver Compounds/chemistry , ortho-Aminobenzoates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...