Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech ; 98: 109462, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31718820

ABSTRACT

Mechanical testing of soft tissues would ideally rely on using fresh specimens. In the event that fresh tissues are not readily available, alternative measures, such as storing fresh specimens at -80 °C, could be considered. Previous studies have shown that changes in the mechanical properties of the tissues due to freezing could be tissue-dependent. Prior to our study, however, such information was not available for the tricuspid valve leaflets. As such, for the first time, we examined whether fresh porcine specimens tested in a biaxial tensile machine would offer comparable results after being frozen at -80 °C. The stress-strain response of the tricuspid valve leaflets displayed no major deviation of the post-frozen leaflets as compared to fresh leaflets. We further compared the radial and circumferential strains as an indicator of deformation at similar stress states in fresh and thawed tissues, and we did not find any significant differences. Ice formation within the extra cellular matrix may modify the collagen fiber configuration, resulting in a slight change in the mechanical response. Nevertheless, our results indicated such a small deviation was negligible, thus enabling the possibility of using frozen porcine tricuspid valve specimens for future research.


Subject(s)
Cryopreservation , Freezing , Mechanical Phenomena , Tricuspid Valve , Animals , Biomechanical Phenomena , Stress, Mechanical , Swine , Time Factors
2.
Bioengineering (Basel) ; 6(3)2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31443151

ABSTRACT

Since many soft tissues function in an isotonic in-vivo environment, it is expected that physiological osmolarity will be maintained when conducting experiments on these tissues ex-vivo. In this study, we aimed to examine how not adhering to such a practice may alter the mechanical response of the tricuspid valve (TV) anterior leaflet. Tissue specimens were immersed in deionized (DI) water prior to quantification of the stress-strain responses using an in-plane biaxial mechanical testing device. Following a two-hour immersion in DI water, the tissue thickness increased an average of 107.3% in the DI water group compared to only 6.8% in the control group, in which the tissue samples were submerged in an isotonic phosphate buffered saline solution for the same period of time. Tissue strains evaluated at 85 kPa revealed a significant reduction in the radial direction, from 34.8% to 20%, following immersion in DI water. However, no significant change was observed in the control group. Our study demonstrated the impact of a hypo-osmotic environment on the mechanical response of TV anterior leaflet. The imbalance in ions leads to water absorption in the valvular tissue that can alter its mechanical response. As such, in ex-vivo experiments for which the native mechanical response of the valves is important, using an isotonic buffer solution is essential.

SELECTION OF CITATIONS
SEARCH DETAIL
...