Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Environ Res Public Health ; 7(8): 3211-24, 2010 08.
Article in English | MEDLINE | ID: mdl-20948956

ABSTRACT

Although individuals spend the majority of their time indoors, most epidemiological studies estimate personal air pollution exposures based on outdoor levels. This almost certainly results in exposure misclassification as pollutant infiltration varies between homes. However, it is often not possible to collect detailed measures of infiltration for individual homes in large-scale epidemiological studies and thus there is currently a need to develop models that can be used to predict these values. To address this need, we examined infiltration of fine particulate matter (PM(2.5)) and identified determinants of infiltration for 46 residential homes in Toronto, Canada. Infiltration was estimated using the indoor/outdoor sulphur ratio and information on hypothesized predictors of infiltration were collected using questionnaires and publicly available databases. Multiple linear regression was used to develop the models. Mean infiltration was 0.52 ± 0.21 with no significant difference across heating and non-heating seasons. Predictors of infiltration were air exchange, presence of central air conditioning, and forced air heating. These variables accounted for 38% of the variability in infiltration. Without air exchange, the model accounted for 26% of the variability. Effective modelling of infiltration in individual homes remains difficult, although key variables such as use of central air conditioning show potential as an easily attainable indicator of infiltration.


Subject(s)
Air Pollution, Indoor/analysis , Environmental Monitoring , Housing , Particulate Matter/chemistry , Environmental Exposure , Humans , Ontario , Particle Size
2.
Chemosphere ; 70(1): 155-64, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17707880

ABSTRACT

The purpose of this study was to assess trace element levels in whole blood, serum and urine of 61 non-smoking adults living on the west coast of Canada and to determine their association with the following variables: age, gender, diet, participation in certain hobby and/or occupational activities, and levels of other trace elements. Participants or their spouses were employed as oyster growers and were originally recruited to study the absorption of cadmium from oyster consumption. Trace elements were measured using inductively-coupled plasma mass spectrometry. A telephone interview was used to assess participant's intake of selected foods and the amount of time they have spent on certain activities over the lifetime. Comparison of results to previous studies revealed that blood lead, blood mercury, serum nickel, serum selenium and urine molybdenum levels were generally higher in this study than have previously been measured, possibly due to higher consumption of seafood in this sample. Men had statistically higher levels of serum iron, blood lead, and serum selenium, while women had statistically higher levels of serum copper and blood manganese. Blood lead levels increased with age. Diet had a statistically significant association with several elements. Consumption of spinach, seaweed, organ meats, and shellfish tended to be positively correlated with trace element concentrations and consumption of various forms of potatoes tended to be negatively correlated. Several statistically significant correlations were also observed between trace elements.


Subject(s)
Trace Elements/metabolism , Adult , Age Factors , Aged , British Columbia/epidemiology , Diet , Environmental Monitoring , Epidemiological Monitoring , Female , Hobbies , Humans , Male , Mass Spectrometry , Middle Aged , Occupations , Sex Factors , Trace Elements/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...