Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 9(8): 8179-8196, 2018 Jan 30.
Article in English | MEDLINE | ID: mdl-29487725

ABSTRACT

Esophageal adenocarcinoma (EAC) is a highly aggressive malignancy that develops from Barrett's esophagus (BE), an intestinal metaplasia of the distal esophagus. microRNAs (miRNAs), short non-coding regulatory RNAs, are frequently dysregulated in BE and are thought to play key roles in the onset of BE and its progression to EAC. miRNAs thus have potential diagnostic and prognostic value and are increasingly being used as cancer biomarkers. This review summarizes the current literature related to miRNAs that are dysregulated in BE within the context of Hedgehog, Notch, MAPK, NF kappa-B, Wnt and epithelial-mesenchymal transition (EMT) signaling which are thought to drive BE onset and progression. This comprehensive analysis of miRNAs and their associated signaling in the regulation of BE provides an overview of vital discoveries in this field and highlights gaps in our understanding of BE pathophysiology that warrant further investigation.

2.
Toxicology ; 344-346: 26-33, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26860701

ABSTRACT

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a halogenated aromatic hydrocarbon that elicits toxicity through the aryl hydrocarbon receptor (AhR). In the liver, gross markers of TCDD toxicity are attributed to AhR activation in parenchymal hepatocytes. However, less is known regarding the consequences of TCDD treatment on non-parenchymal cells in the liver. Hepatic stellate cells (HSCs) are non-parenchymal cells that store vitamin A when quiescent. Upon liver injury, activated HSCs lose this storage ability and instead function in the development and maintenance of inflammation and fibrosis through the production of pro-inflammatory mediators and collagen type I. Reports that TCDD exposure disrupts hepatic retinoid homeostasis and dysregulates extracellular matrix remodeling in the liver led us to speculate that TCDD treatment may disrupt HSC activity. The human HSC line LX-2 was used to test the hypothesis that TCDD treatment directly activates HSCs. Results indicate that exposure to 10nM TCDD almost completely inhibited lipid droplet storage in LX-2 cells cultured with retinol and palmitic acid. TCDD treatment also increased LX-2 cell proliferation, expression of α-smooth muscle actin, and production of monocyte chemoattractant protein-1 (MCP-1), all of which are characteristics of activated HSCs. However, TCDD treatment had no effect on Col1a1 mRNA levels in LX-2 cells stimulated with the potent profibrogenic mediator, transforming growth factor-ß. The TCDD-mediated increase in LX-2 cell proliferation, but not MCP-1 production, was abolished when phosphoinositide 3-kinase was inhibited. These results indicate that HSCs are susceptible to direct modulation by TCDD and that TCDD likely increases HSC activation through a multi-faceted mechanism.


Subject(s)
Cell Proliferation/drug effects , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Polychlorinated Dibenzodioxins/toxicity , Cell Line , Cell Proliferation/physiology , Humans , Receptors, Aryl Hydrocarbon/agonists , Receptors, Aryl Hydrocarbon/metabolism
3.
Scanning ; 33(6): 405-12, 2011.
Article in English | MEDLINE | ID: mdl-21630288

ABSTRACT

Long-term stability of plasmid DNA (pDNA) conformations is critical in many research areas, especially those concerning future gene therapy. Despite its importance, the time-evolution of pDNA structures has rarely been studied at a molecular resolution. Here, the time-evolution of pDNA solutions spanning four years was observed with atomic force microscopy (AFM). The AFM data show that the pDNA molecules changed over time from isolated supercoiled structures, to aggregated supercoiled structures, to thin, branched network structures, and finally to wider, branched network structures. Additional topographical analysis of the AFM data suggests that the actions of residual proteins could be the main mechanism for the structural changes in our laboratory-prepared pDNA.


Subject(s)
DNA/ultrastructure , Plasmids/ultrastructure , Microscopy, Atomic Force , Nucleic Acid Conformation , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...