Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Sel Evol ; 56(1): 4, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38183016

ABSTRACT

BACKGROUND: There can be variation between animals in how stable their genetic merit is across different environments due to genotype-by-environment (G×E) interactions. This variation could be used in breeding programs to select robust genotypes that combine high overall performance with stable genetic ranking across environments. There have been few attempts to validate breeding values for robustness in livestock, although this is a necessary step towards their implementation in selection decisions. The objective of this study was to validate breeding values for the robustness of body weight across different growth environments that were estimated using reaction norm models in sheep data. RESULTS: Using threefold cross-validation for the progeny of 337 sires, the average correlation between single-step breeding values for the reaction norm slope and the realised robustness of progeny across different growth environments was 0.21. The correlation between breeding values for the reaction slope estimated independently in two different datasets linked by common sires was close to the expected correlation based on theory. CONCLUSIONS: Slope estimated breeding values (EBV) obtained using reaction norm models were predictive of the phenotypic robustness of progeny across different environments and were consistent for sires with progeny in two different datasets. Selection based on reaction norm EBV could be used to increase the robustness of a population to environmental variation.


Subject(s)
Livestock , Animals , Sheep/genetics , Australia , Body Weight , Genotype , Reference Values
3.
Theor Appl Genet ; 136(5): 99, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37027025

ABSTRACT

KEY MESSAGE: The reaction norm analysis of stability can be enhanced by partitioning the contribution of different types of G × E to the variation in slope. The slope of regression in a reaction norm model, where the performance of a genotype is regressed over an environmental covariable, is often used as a measure of stability of genotype performance. This method could be developed further by partitioning variation in the slope of regression into the two sources of genotype-by-environment interaction (G × E) which cause it: scale-type G × E (heterogeneity of variance) and rank-type G × E (heterogeneity of correlation). Because the two types of G × E have very different properties, separating their effect would enable a clearer understanding of stability. The aim of this paper was to demonstrate two methods which seek to achieve this in reaction norm models. Reaction norm models were fit to yield data from a multi-environment trial in Barley (Hordeum vulgare), with the adjusted mean yield from each environment used as the environmental covariable. Stability estimated from factor-analytic models, which can disentangle the two types of G × E and estimate stability based on rank-type G × E, was used for comparison. Adjusting the reaction norm slope to account for scale-type G × E using a genetic regression more than tripled the correlation with factor-analytic estimates of stability (0.24-0.26 to 0.80-0.85), indicating that it removed variation in the reaction norm slope that originated from scale-type G × E. A standardisation procedure had a more modest increase (055-0.59) but could be useful when curvilinear reaction norms are required. Analyses which use reaction norms to explore the stability of genotypes could gain additional insight into the mechanisms of stability by applying the methods outlined in this study.


Subject(s)
Environment , Gene-Environment Interaction , Models, Genetic , Plant Breeding , Genotype
4.
Genet Sel Evol ; 54(1): 40, 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35659541

ABSTRACT

BACKGROUND: Selection of livestock based on their robustness or sensitivity to environmental variation could help improve the efficiency of production systems, particularly in the light of climate change. Genetic variation in robustness arises from genotype-by-environment (G × E) interactions, with genotypes performing differently when animals are raised in contrasted environments. Understanding the nature of this genetic variation is essential to implement strategies to improve robustness. In this study, our aim was to explore the genetics of robustness in Australian sheep to different growth environments using linear reaction norm models (RNM), with post-weaning weight records of 22,513 lambs and 60 k single nucleotide polymorphisms (SNPs). The use of scale-corrected genomic estimated breeding values (GEBV) for the slope to account for scale-type G × E interactions was also investigated. RESULTS: Additive genetic variance was observed for the slope of the RNM, with genetic correlations between low- and high-growth environments indicating substantial re-ranking of genotypes (0.44-0.49). The genetic variance increased from low- to high-growth environments. The heritability of post-weaning body weight ranged from 0.28 to 0.39. The genetic correlation between intercept and slope of the reaction norm for post-weaning body weight was low to moderate when based on the estimated (co)variance components but was much higher when based on back-solved SNP effects. An initial analysis suggested that a region on chromosome 11 affected both the intercept and the slope, but when the GEBV for the slope were conditioned on the GEBV for the intercept to remove the effect of scale-type G × E interactions on SNP effects for robustness, a single genomic region on chromosome 7 was found to be associated with robustness. This region included genes previously associated with growth traits and disease susceptibility in livestock. CONCLUSIONS: This study shows a significant genetic variation in the slope of RNM that could be used for selecting for increased robustness of sheep. Both scale-type and rank-type G × E interactions contributed to variation in the slope. The correction for scale effects of GEBV for the slope should be considered when analysing robustness using RNM. Overall, robustness appears to be a highly polygenic trait.


Subject(s)
Genome , Models, Genetic , Animals , Australia , Body Weight/genetics , Genomics , Genotype , Sheep/genetics
5.
Transl Anim Sci ; 5(3): txab126, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34430801

ABSTRACT

Information on body weight and average daily gain (ADG) of growing animals is key not only to monitoring performance, but also for use in genetic evaluations in the pursuit of achieving sustainable genetic gain. Accurate calculation of ADG, however, requires serial measures of body weight over at least 70 days. This can be resource intensive and thus alternative approaches to predicting individual animal ADG warrant investigation. One such approach is the use of continuously collected individual animal partial body weights. The objective of the present study was to determine the utility of partial body weights in predicting both body weight and ADG; a secondary objective was to deduce the appropriate length of test to determine ADG from partial body weight records. The dataset used consisted of partial body weights, predicted body weights and recorded body weights recorded for 8,972 growing cattle from a range of different breed types in 35 contemporary groups. The relationships among partial body weight, predicted body weight and recorded body weight at the beginning and end of the performance test were determined and calculated ADG per animal from each body weight measure were also compared. On average, partial body weight explained 90.7 ± 2.0% of the variation in recorded body weight at the beginning of the postweaning gain test and 87.9 ± 2.9% of the variation in recorded body weight at its end. The GrowSafe proprietary algorithm to predict body weight from the partial body weight strengthened these coefficients of determination to 95.1 ± 0.9% and 94.9 ± 0.8%, respectively. The ADG calculated from the partial body weight or from the predicted body weight were very strongly correlated (r = 0.95); correlations between these ADG values with those calculated from the recorded body weights were weaker at 0.81 and 0.78, respectively. For some applications, ADG may be measured with sufficient accuracy with a test period of 50 days using partial body weights. The intended inference space is to individual trials which have been represented in this study by contemporary groups of growing cattle from different genotypes.

6.
J Physiol ; 567(Pt 1): 159-75, 2005 Aug 15.
Article in English | MEDLINE | ID: mdl-15932888

ABSTRACT

Voltage-gated potassium (Kv) currents of human pancreatic islet cells were studied by whole-cell patch clamp recording. On average, 75% of the cells tested were identified as beta-cells by single cell, post-recording RT-PCR for insulin mRNA. In most cells, the dominant Kv current was a delayed rectifier. The delayed rectifier activated at potentials above -20 mV and had a V(1/2) for activation of -5.3 mV. Onset of inactivation was slow for a major component (tau = 3.2 s at +20 mV) observed in all cells; a smaller component (tau = 0.30 s) with an amplitude of approximately 25% was seen in some cells. Recovery from inactivation had a tau of 2.5 s at -80 mV and steady-state inactivation had a V(1/2) of -39 mV. In 12% of cells (21/182) a low-threshold, transient Kv current (A-current) was present. The A-current activated at membrane potentials above -40 mV, inactivated with a time constant of 18.5 ms at -20 mV, and had a V(1/2) for steady-state inactivation of -52 mV. TEA inhibited total Kv current with an IC50 = 0.54 mm and PAC, a disubstituted cyclohexyl Kv channel inhibitor, inhibited with an IC50 = 0.57 microm. The total Kv current was insensitive to margatoxin (100 nm), agitoxin-2 (50 nm), kaliotoxin (50 nm) and ShK (50 nm). Hanatoxin (100 nm) inhibited total Kv current by 65% at +20 mV. Taken together, these data provide evidence of at least two distinct types of Kv channels in human pancreatic beta-cells and suggest that more than one type of Kv channel may be involved in the regulation of glucose-dependent insulin secretion.


Subject(s)
Islets of Langerhans/physiology , Potassium Channel Blockers/pharmacology , Potassium Channels, Voltage-Gated/physiology , Tetraethylammonium/pharmacology , Biophysical Phenomena , Biophysics , Cells, Cultured , Cyclohexanones/pharmacology , Delayed Rectifier Potassium Channels , Humans , Islets of Langerhans/cytology , Membrane Potentials/drug effects , Membrane Potentials/physiology , Neurotoxins/pharmacology , Patch-Clamp Techniques , Peptides/pharmacology , Scorpion Venoms
SELECTION OF CITATIONS
SEARCH DETAIL
...