Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 124(10): 104801, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32216389

ABSTRACT

Wakefield based accelerators capable of accelerating gradients 2 orders of magnitude higher than present accelerators offer a path to compact high energy physics instruments and light sources. However, for high gradient accelerators, beam instabilities driven by commensurately high transverse wakefields limit beam quality. Previously, it has been theoretically shown that transverse wakefields can be reduced by elliptically shaping the transverse sizes of beams in dielectric structures with planar symmetry. Here, we report experimental measurements that demonstrate reduced transverse wakefields for elliptical beams in planar symmetric structures which are consistent with theoretical models. These results may enable the design of gigavolt-per-meter gradient wakefield based accelerators that produce and stably accelerate high quality beams.

2.
Nat Commun ; 7: 11785, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27250570

ABSTRACT

Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m(-1) is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...