Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Orthop Res ; 42(7): 1536-1544, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38327023

ABSTRACT

The success of uncemented total ankle replacement (TAR) is linked to initial stability because bony ingrowth depends upon limited early micromotion. Tibial implant design fixation features resist micromotion aided by bony sidewall retention and interference fit. Our goal was to investigate factors influencing implant-bone micromotion in TAR. Two TAR tibial components were virtually inserted into CT-derived computer models of two distal tibias from patients with end-stage ankle arthritis. Density-based inhomogeneous material assignment was used to model bone compaction during press-fit. Finite element analysis (FEA) was used to simulate three fixation cases: (1) no sidewalls + line-to-line fit, (2) sidewalls + line-to-line fit, and (3) sidewalls + 50, 100, or 200 µm interference fit. Kinetic profiles from the stance phase of gait were simulated and micromotions computed from FEA output. Without sidewalls or interference fit, micromotions were largest in early and late stance, with largest micromotions (averaging ~150-250 µm) observed near heel strike. Micromotions decreased 39%-62% when sidewalls were retained. When interference fit was also modeled, micromotions decreased another 37%-61% to ~10 µm. Micromotion differences between patients persisted with sidewall retention but largely disappeared with interference fit. This study presents new insights into the effects of TAR fixation features on implant-bone micromotion. Stability appeared to be influenced by surrounding bone quality, but this influence was greatly diminished when interference fit was introduced. More complete understanding of TAR implant features and performance is needed, but our results show the importance of bone quality and interference fit in the stability of uncemented TAR.


Subject(s)
Arthroplasty, Replacement, Ankle , Finite Element Analysis , Humans , Arthroplasty, Replacement, Ankle/instrumentation , Prosthesis Design , Tibia/surgery , Male , Middle Aged , Aged , Female , Ankle Joint/surgery , Joint Prosthesis
2.
Inorg Chem ; 61(26): 10015-10022, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35729687

ABSTRACT

We present the synthesis of a novel binary metal oxide material: Ba7Mn4O15. The crystal structure has been investigated by high-resolution powder synchrotron X-ray diffraction in the temperature range of 100-300 K as well as by powder neutron diffraction at 10 and 80 K. This material represents an isostructural barium-substituted analogue of the layered material Sr7Mn4O15 that forms its own structural class. However, we find that Ba7Mn4O15 adopts a distinct magnetic ordering, resulting in a magnetoelectric ground state below 50 K. The likely magnetoelectric coupling mechanisms have been inferred from performing a careful symmetry-adapted refinement against the powder neutron diffraction experiments, as well as by making a comparison with the nonmagnetoelectric ground state of Sr7Mn4O15.

3.
J Appl Crystallogr ; 54(Pt 2): 533-540, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33953655

ABSTRACT

Improper ferroelectric mechanisms are increasingly under investigation for their potential to expand the current catalogue of functional materials whilst promoting couplings between ferroelectricity and other technologically desirable properties such as ferromagnetism. This work presents the results of an in situ synchrotron X-ray diffraction experiment performed on samples of Ca2.15Sr0.85Ti2O7 in an effort to elucidate the mechanism of hybrid improper ferroelectric switching in this compound. By simultaneously applying an electric field and recording diffraction patterns, shifts in the intensity of superstructure peaks consistent with one of the switching mechanisms proposed by Nowadnick & Fennie [Phys. Rev. B, (2016), 94, 104105] are observed. While the experiment only achieves a partial response, comparison with simulated data demonstrates a preference for a one-step switching mechanism involving an unwinding of the octahedral rotation mode in the initial stages of switching. These results represent some of the first reported experimental diffraction-based evidence for a switching mechanism in an improper ferroelectric.

4.
Sensors (Basel) ; 21(4)2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33671996

ABSTRACT

Organ-on-chip devices have provided the pharmaceutical and tissue engineering worlds much hope since they arrived and began to grow in sophistication. However, limitations for their applicability were soon realized as they lacked real-time monitoring and sensing capabilities. The users of these devices relied solely on endpoint analysis for the results of their tests, which created a chasm in the understanding of life between the lab the natural world. However, this gap is being bridged with sensors that are integrated into organ-on-chip devices. This review goes in-depth on different sensing methods, giving examples for various research on mechanical, electrical resistance, and bead-based sensors, and the prospects of each. Furthermore, the review covers works conducted that use specific sensors for oxygen, and various metabolites to characterize cellular behavior and response in real-time. Together, the outline of these works gives a thorough analysis of the design methodology and sophistication of the current sensor integrated organ-on-chips.


Subject(s)
Lab-On-A-Chip Devices , Electric Impedance , Oligonucleotide Array Sequence Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...