Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 7161, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36418312

ABSTRACT

Levels of fire activity and severity that are unprecedented in the instrumental record have recently been observed in forested regions around the world. Using a large sample of daily fire events and hourly climate data, here we show that fire activity in all global forest biomes responds strongly and predictably to exceedance of thresholds in atmospheric water demand, as measured by maximum daily vapour pressure deficit. The climatology of vapour pressure deficit can therefore be reliably used to predict forest fire risk under projected future climates. We find that climate change is projected to lead to widespread increases in risk, with at least 30 additional days above critical thresholds for fire activity in forest biomes on every continent by 2100 under rising emissions scenarios. Escalating forest fire risk threatens catastrophic carbon losses in the Amazon and major population health impacts from wildfire smoke in south Asia and east Africa.


Subject(s)
Fires , Wildfires , Carbon Sequestration , Water , Forests
2.
Sci Rep ; 12(1): 11871, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35831432

ABSTRACT

There is an imperative for fire agencies to quantify the potential for prescribed burning to mitigate risk to life, property and environmental values while facing changing climates. The 2019-2020 Black Summer fires in eastern Australia raised questions about the effectiveness of prescribed burning in mitigating risk under unprecedented fire conditions. We performed a simulation experiment to test the effects of different rates of prescribed burning treatment on risks posed by wildfire to life, property and infrastructure. In four forested case study landscapes, we found that the risks posed by wildfire were substantially higher under the fire weather conditions of the 2019-2020 season, compared to the full range of long-term historic weather conditions. For area burnt and house loss, the 2019-2020 conditions resulted in more than a doubling of residual risk across the four landscapes, regardless of treatment rate (mean increase of 230%, range 164-360%). Fire managers must prepare for a higher level of residual risk as climate change increases the likelihood of similar or even more dangerous fire seasons.


Subject(s)
Fires , Wildfires , Australia , Climate Change , Ecosystem , Forests
3.
Glob Chang Biol ; 28(17): 5211-5226, 2022 09.
Article in English | MEDLINE | ID: mdl-35711097

ABSTRACT

Fire regimes are changing across the globe in response to complex interactions between climate, fuel, and fire across space and time. Despite these complex interactions, research into predicting fire regime change is often unidimensional, typically focusing on direct relationships between fire activity and climate, increasing the chances of erroneous fire predictions that have ignored feedbacks with, for example, fuel loads and availability. Here, we quantify the direct and indirect role of climate on fire regime change in eucalypt dominated landscapes using a novel simulation approach that uses a landscape fire modelling framework to simulate fire regimes over decades to centuries. We estimated the relative roles of climate-mediated changes as both direct effects on fire weather and indirect effects on fuel load and structure in a full factorial simulation experiment (present and future weather, present and future fuel) that included six climate ensemble members. We applied this simulation framework to predict changes in fire regimes across six temperate forested landscapes in south-eastern Australia that encompass a broad continuum from climate-limited to fuel-limited. Climate-mediated change in weather and fuel was predicted to intensify fire regimes in all six landscapes by increasing wildfire extent and intensity and decreasing fire interval, potentially led by an earlier start to the fire season. Future weather was the dominant factor influencing changes in all the tested fire regime attributes: area burnt, area burnt at high intensity, fire interval, high-intensity fire interval, and season midpoint. However, effects of future fuel acted synergistically or antagonistically with future weather depending on the landscape and the fire regime attribute. Our results suggest that fire regimes are likely to shift across temperate ecosystems in south-eastern Australia in coming decades, particularly in climate-limited systems where there is the potential for a greater availability of fuels to burn through increased aridity.


Subject(s)
Climate Change , Wildfires , Ecosystem , Forests , Weather
4.
Lancet Planet Health ; 5(9): e608-e619, 2021 09.
Article in English | MEDLINE | ID: mdl-34508682

ABSTRACT

BACKGROUND: Smoke from uncontrolled wildfires and deliberately set prescribed burns has the potential to produce substantial population exposure to fine particulate matter (PM2·5). We aimed to estimate historical health costs attributable to smoke-related PM2·5 from all landscape fires combined, and the relative contributions from wildfires and prescribed burns, in New South Wales, Australia. METHODS: We quantified PM2·5 from all landscape fire smoke (LFS) and estimated the attributable health burden and daily health costs between July 1, 2000, and June 30, 2020, for all of New South Wales and by smaller geographical regions. We combined these results with a spatial database of landscape fires to estimate the relative total and per hectare health costs attributable to PM2·5 from wildfire smoke (WFS) and prescribed burning smoke (PBS). FINDINGS: We estimated health costs of AU$ 2013 million (95% CI 718-3354; calculated with the 2018 value of the AU$). $1653 million (82·1%) of costs were attributable to WFS and $361 million (17·9%) to PBS. The per hectare health cost was of $105 for all LFS days ($104 for WFS and $477 for PBS). In sensitivity analyses, the per hectare costs associated with PBS was consistently higher than for WFS under a range of different scenarios. INTERPRETATION: WFS and PBS produce substantial health costs. Total health costs are higher for WFS, but per hectare costs are higher for PBS. This should be considered when assessing the trade-offs between prescribed burns and wildfires. FUNDING: None.


Subject(s)
Calculi , Fires , Wildfires , Health Care Costs , Humans , Particulate Matter
7.
J Environ Manage ; 235: 34-41, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30669091

ABSTRACT

Considerable investments are made in managing fire risk to human assets, including a growing use of fire behaviour simulation tools to allocate expenditure. Understanding fire risk requires estimation of the likelihood of ignition, spread of the fire and impact on assets. The ability to estimate and predict risk requires both the development of ignition likelihood models and the evaluation of these models in novel environments. We developed models for natural and anthropogenic ignitions in the south-eastern Australian state of Victoria incorporating variables relating to fire weather, terrain and the built environment. Fire weather conditions had a consistently positive effect on the likelihood of ignition, although they contributed much more to lightning (57%) and power transmission (55%) ignitions than the 7 other modelled causes (8-32%). The built environment played an important role in driving anthropogenic ignitions. Housing density was the most important variable in most models and proximity to roads had a consistently positive effect. In contrast, the best model for lightning ignitions included a positive relationship with primary productivity, as represented by annual rainfall. These patterns are broadly consistent with previous ignition modelling studies. The models developed for Victoria were tested in the neighbouring fire prone states of South Australia and Tasmania. The anthropogenic ignition model performed well in South Australia (AUC = 0.969) and Tasmania (AUC = 0.848), whereas the natural ignition model only performed well in South Australia (AUC = 0.972; Tasmania AUC = 0.612). Model performance may have been impaired by much lower lightning ignition rates in South Australia and Tasmania than in Victoria. This study shows that the spatial likelihood of ignition can be reliably predicted based on readily available meteorological and biophysical data. Furthermore, the strong performance of anthropogenic and natural ignition models in novel environments suggests there are some universal drivers of ignition likelihood across south-eastern Australia.


Subject(s)
Fires , Lightning , Wildfires , Humans , South Australia , Tasmania , Victoria
8.
Glob Chang Biol ; 20(5): 1412-28, 2014 May.
Article in English | MEDLINE | ID: mdl-24151212

ABSTRACT

The response of fire to climate change may vary across fuel types characteristic of differing vegetation types (i.e. litter vs. grass). Models of fire under climatic change capture these differing potential responses to varying degrees. Across south-eastern Australia, an elevation in the severity of weather conditions conducive to fire has been measured in recent decades. We examined trends in area burned (1975-2009) to determine if a corresponding increase in fire had occurred across the diverse range of ecosystems found in this part of the continent. We predicted that an increase in fire, due to climatic warming and drying, was more likely to have occurred in moist, temperate forests near the coast than in arid and semiarid woodlands of the interior, due to inherent contrasts in the respective dominant fuel types (woody litter vs. herbaceous fuels). Significant warming (i.e. increased temperature and number of hot days) and drying (i.e. negative precipitation anomaly, number of days with low humidity) occurred across most of the 32 Bioregions examined. The results were mostly consistent with predictions, with an increase in area burned in seven of eight forest Bioregions, whereas area burned either declined (two) or did not change significantly (nine) in drier woodland Bioregions. In 12 woodland Bioregions, data were insufficient for analysis of temporal trends in fire. Increases in fire attributable mostly to warming or drying were confined to three Bioregions. In the remainder, such increases were mostly unrelated to warming or drying trends and therefore may be due to other climate effects not explored (e.g. lightning ignitions) or possible anthropogenic influences. Projections of future fire must therefore not only account for responses of different fuel systems to climatic change but also the wider range of ecological and human effects on interactions between fire and vegetation.


Subject(s)
Climate Change , Ecosystem , Fires , Australia , Climate , Droughts , Time Factors , Weather
9.
Eur J Cell Biol ; 89(7): 489-98, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20223554

ABSTRACT

Previous studies have shown that the overexpression of tropomyosins leads to isoform-specific alterations in the morphology of subcellular compartments in neuronal cells. Here we have examined the role of the most abundant set of isoforms from the gamma-Tm gene by knocking out the alternatively spliced C-terminal exon 9d. Despite the widespread location of exon 9d-containing isoforms, mice were healthy and viable. Compensation by products containing the C-terminal exon 9c was seen in the adult brain. While neurons from these mice show a mild phenotype at one day in culture, neurons revealed a significant morphological alteration with an increase in the branching of dendrites and axons after four days in culture. Our data suggest that this effect is mediated via altered stability of actin filaments in the growth cones. We conclude that exon 9d-containing isoforms are not essential for survival of neuronal cells and that isoform choice from the gamma-Tm gene is flexible in the brain. Although functional redundancy does not exist between tropomyosin genes, these results suggest that significant redundancy exists between products from the same gene.


Subject(s)
Neurogenesis/physiology , Tropomyosin/metabolism , Alternative Splicing/genetics , Alternative Splicing/physiology , Animals , Axons/metabolism , Brain/cytology , Brain/metabolism , Cell Line , Cells, Cultured , Electrophoresis, Polyacrylamide Gel , Immunohistochemistry , Mice , Neurogenesis/genetics , Neurons/cytology , Neurons/metabolism , Phenotype , Protein Isoforms/genetics , Protein Isoforms/metabolism , Tropomyosin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...