Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Gen Virol ; 100(4): 629-641, 2019 04.
Article in English | MEDLINE | ID: mdl-30869582

ABSTRACT

There is growing evidence of the influence of sphingosine kinase (SK) enzymes on viral infection. Here, the role of sphingosine kinase 2 (SK2), an isoform of SK prominent in the brain, was defined during dengue virus (DENV) infection. Chemical inhibition of SK2 activity using two different SK2 inhibitors, ABC294640 and K145, had no effect on DENV infection in human cells in vitro. In contrast, DENV infection was restricted in SK2-/- immortalized mouse embryonic fibroblasts (iMEFs) with reduced induction of IFN-ß mRNA and protein, and mRNA for the IFN-stimulated genes (ISGs) viperin, IFIT1, IRF7 and CXCL10 in DENV-infected SK2-/- compared to WT iMEFs. Intracranial (ic) DENV injection in C57BL/6 SK2-/- mice induced body weight loss earlier than in WT mice but DENV RNA levels were comparable in the brain. Neither SK1 mRNA or sphingosine-1-phosphate (S1P) levels were altered following ic DENV infection in WT or SK2-/- mice but brain S1P levels were reduced in all SK2-/- mice, independent of DENV infection. CD8 mRNA was induced in the brains of both DENV-infected WT and SK2-/- mice, suggesting normal CD8+ T-cell infiltration into the DENV-infected brain independent of SK2 or S1P. Thus, although SK2 may be important for replication of some viruses SK2 activity does not affect DENV infection in vitro and SK2 or S1P levels do not influence DENV infection or T-cell infiltration in the context of infection in the brain.


Subject(s)
Dengue Virus/pathogenicity , Dengue/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Adamantane/analogs & derivatives , Adamantane/pharmacology , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Cell Line , Cell Line, Tumor , Dengue/drug therapy , Dengue Virus/drug effects , HEK293 Cells , Hep G2 Cells , Humans , Interferon-beta/metabolism , Lysophospholipids/metabolism , Mice , Mice, Inbred C57BL , Pyridines/pharmacology , RNA, Messenger/metabolism , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Thiazolidinediones/pharmacology
2.
Clin Transl Immunology ; 6(7): e151, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28791126

ABSTRACT

Dengue virus (DENV) regulates sphingosine kinase (SK)-1 activity and chemical inhibition of SK1 reduces DENV infection. In primary murine embryonic fibroblasts (pMEFs) lacking SK1 however, DENV infection is enhanced and this is associated with induction of normal levels of interferon beta (IFN-ß) but reduced levels of IFN-stimulated genes (ISGs). We have further investigated this link between SK1 and type I IFN responses. DENV infection downregulates cell-surface IFN-alpha receptor (IFNAR)1 in both wild-type (WT) and SK1-/- pMEF, but, consistent with poor ISG responses, shows reduced induction of phosphorylated (p)-STAT1 and key IFN regulatory factors (IRF)1 and -7 in SK1-/- pMEF. Direct IFN stimulation induced ISGs (viperin, IFIT1), CXCL10, IRF1 and -7 and p-STAT1. Responses, however, were significantly reduced in SK1-/- pMEF, except for IFN-stimulated CXCL10 and IRF7. Poor IFN responses in SK1-/- pMEF were associated with a small reduction in basal cell-surface IFNAR1 and IRF1 mRNA in uninfected SK1-/- compared with WT pMEF. In contrast, treatment of cells with the SK1 inhibitor, SK1-I or expression of an inhibitory SK1 short hairpin RNA (shRNA), both of which reduce DENV infection, does not alter basal IRF1 mRNA or affect type I IFN stimulation of p-STAT1. Thus, cells genetically lacking SK1 can induce many responses normally following DENV infection, but have adaptive changes in IFNAR1 and IRF1 that compromise DENV-induced type I IFN responses. This suggests a biological link between SK1 and IFN-stimulated pathways. Other approaches to reduce SK1 activity, however, do not influence these important antiviral pathways but reduce infection and may be useful antiviral strategies.

3.
PLoS One ; 12(1): e0169814, 2017.
Article in English | MEDLINE | ID: mdl-28095439

ABSTRACT

We have previously reported that the absence of sphingosine kinase 1 (SK1) affects both dengue virus (DENV) infection and innate immune responses in vitro. Here we aimed to define SK1-dependancy of DENV-induced disease and the associated innate responses in vivo. The lack of a reliable mouse model with a fully competent interferon response for DENV infection is a challenge, and here we use an experimental model of DENV infection in the brain of immunocompetent mice. Intracranial injection of DENV-2 into C57BL/6 mice induced body weight loss and neurological symptoms which was associated with a high level of DENV RNA in the brain. Body weight loss and DENV RNA level tended to be greater in SK1-/- compared with wildtype (WT) mice. Brain infection with DENV-2 is associated with the induction of interferon-ß (IFN-ß) and IFN-stimulated gene (ISG) expression including viperin, Ifi27l2a, IRF7, and CXCL10 without any significant differences between WT and SK1-/- mice. The SK2 and sphingosine-1-phosphate (S1P) levels in the brain were unchanged by DENV infection or the lack of SK1. Histological analysis demonstrated the presence of a cellular infiltrate in DENV-infected brain with a significant increase in mRNA for CD8 but not CD4 suggesting this infiltrate is likely CD8+ but not CD4+ T-lymphocytes. This increase in T-cell infiltration was not affected by the lack of SK1. Overall, DENV-infection in the brain induces IFN and T-cell responses but does not influence the SK/S1P axis. In contrast to our observations in vitro, SK1 has no major influence on these responses following DENV-infection in the mouse brain.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Dengue Virus/immunology , Dengue/immunology , Gene Expression Regulation/drug effects , Immunity, Innate/immunology , Interferon-beta/pharmacology , Phosphotransferases (Alcohol Group Acceptor)/physiology , Animals , Antiviral Agents/pharmacology , Dengue/drug therapy , Dengue/virology , Dengue Virus/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Virus Replication
4.
J Gen Virol ; 97(1): 95-109, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26541871

ABSTRACT

Sphingosine kinase (SK) 1 is a host kinase that enhances some viral infections. Here we investigated the ability of SK1 to modulate dengue virus (DENV) infection in vitro. Overexpression of SK1 did not alter DENV infection; however, targeting SK1 through chemical inhibition resulted in reduced DENV RNA and infectious virus release. DENV infection of SK1⁻/ ⁻ murine embryonic fibroblasts (MEFs) resulted in inhibition of infection in an immortalized line (iMEF) but enhanced infection in primary MEFs (1°MEFs). Global cellular gene expression profiles showed expected innate immune mRNA changes in DENV-infected WT but no induction of these responses in SK1⁻/⁻ iMEFs. Reverse transciption PCR demonstrated a low-level induction of IFN-ß and poor induction of mRNA for the interferon-stimulated genes (ISGs) viperin, IFIT1 and CXCL10 in DENV-infected SK1⁻/⁻ compared with WT iMEFs. Similarly, reduced induction of ISGs was observed in SK1⁻/⁻ 1°MEFs, even in the face of high-level DENV replication. In both iMEFs and 1°MEFs, DENV infection induced production of IFN-ß protein. Additionally, higher basal levels of antiviral factors (IRF7, CXCL10 and OAS1) were observed in uninfected SK1⁻/⁻ iMEFs but not 1°MEFs. This suggests that, in this single iMEF line, lack of SK1 upregulates the basal levels of factors that may protect cells against DENV infection. More importantly, regardless of the levels of DENV replication, all cells that lacked SK1 produced IFN-ß but were refractory to induction of ISGs such as viperin, IFIT1 and CXCL10. Based on these findings, we propose new roles for SK1 in affecting innate responses that regulate susceptibility to DENV infection.


Subject(s)
Dengue Virus/immunology , Dengue Virus/physiology , Disease Susceptibility , Host-Pathogen Interactions , Immunity, Innate , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Animals , Cells, Cultured , Fibroblasts/virology , Gene Expression Profiling , Mice, Inbred C57BL , Mice, Knockout
5.
J Comp Neurol ; 523(17): 2555-69, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26010480

ABSTRACT

In mice dorsal root ganglia (DRG), some neurons express calcitonin gene-related peptide (CGRP) without substance P (SP; CGRP(+) SP(-) ). The projections and functions of these neurons are unknown. Therefore, we combined in vitro axonal tracing with multiple-labeling immunohistochemistry to neurochemically define these neurons and characterize their peripheral and central projections. Cervical spinal cord, DRG, and forepaw skin were removed from C57Bl/6 mice and multiple-labeled for CGRP, SP, and either marker for the sensory neuron subpopulations transient receptor potential vanilloid type 1 (TRPV1), neurofilament 200 (NF200), or vesicular glutamate transporter 2 (VGluT1). To determine central projections of CGRP(+) SP(-) neurons, Neurobiotin (NB) was applied to the C7 ventral ramus and visualized in DRG and spinal cord sections colabeled for CGRP and SP. Half (50%) of the CGRP-immunoreactive DRG neurons lacked detectable SP and had a mean soma size of 473 ± 14 µm(2) (n = 5); 89% of the CGRP(+) SP(-) neurons expressed NF200 (n = 5), but only 32% expressed TRPV1 (n = 5). Cutaneous CGRP(+) SP(-) fibers were numerous within dermal papillae and around hair shafts (n = 4). CGRP(+) SP(-) boutons were prevalent in lateral lamina I and in lamina IV/V of the dorsal horn (n = 5). NB predominantly labeled fibers penetrating lamina IV/V, 6 ± 3% contained CGRP (n = 5), and 21 ± 2% contained VGluT1 (n = 3). CGRP(+) SP(-) afferent neurons are likely to be non-nociceptive. Their soma size, neurochemical profile, and peripheral and central targets suggest that CGRP(+) SP(-) neurons are polymodal mechanoceptors.


Subject(s)
Calcitonin Gene-Related Peptide/metabolism , Ganglia, Spinal/cytology , Sensory Receptor Cells/metabolism , Skin/cytology , Spinal Cord/cytology , Afferent Pathways/physiology , Analysis of Variance , Animals , Biotin/analogs & derivatives , Biotin/metabolism , Cell Count , Female , Mice , Mice, Inbred C57BL , Neurofilament Proteins/metabolism , Phosphopyruvate Hydratase/metabolism , Skin/innervation , Substance P/metabolism , TRPV Cation Channels/metabolism , Vesicular Glutamate Transport Protein 1/metabolism
6.
PLoS Negl Trop Dis ; 7(4): e2178, 2013.
Article in English | MEDLINE | ID: mdl-23638199

ABSTRACT

The host protein viperin is an interferon stimulated gene (ISG) that is up-regulated during a number of viral infections. In this study we have shown that dengue virus type-2 (DENV-2) infection significantly induced viperin, co-incident with production of viral RNA and via a mechanism requiring retinoic acid-inducible gene I (RIG-I). Viperin did not inhibit DENV-2 entry but DENV-2 RNA and infectious virus release was inhibited in viperin expressing cells. Conversely, DENV-2 replicated to higher tires earlier in viperin shRNA expressing cells. The anti-DENV effect of viperin was mediated by residues within the C-terminal 17 amino acids of viperin and did not require the N-terminal residues, including the helix domain, leucine zipper and S-adenosylmethionine (SAM) motifs known to be involved in viperin intracellular membrane association. Viperin showed co-localisation with lipid droplet markers, and was co-localised and interacted with DENV-2 capsid (CA), NS3 and viral RNA. The ability of viperin to interact with DENV-2 NS3 was associated with its anti-viral activity, while co-localisation of viperin with lipid droplets was not. Thus, DENV-2 infection induces viperin which has anti-viral properties residing in the C-terminal region of the protein that act to restrict early DENV-2 RNA production/accumulation, potentially via interaction of viperin with DENV-2 NS3 and replication complexes. These anti-DENV-2 actions of viperin show both contrasts and similarities with other described anti-viral mechanisms of viperin action and highlight the diverse nature of this unique anti-viral host protein.


Subject(s)
Dengue Virus/pathogenicity , Dengue/metabolism , Proteins/metabolism , Animals , Blotting, Western , Cell Line, Tumor , Chlorocebus aethiops , Dengue/genetics , Dengue/virology , Humans , Oxidoreductases Acting on CH-CH Group Donors , Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Vero Cells
7.
Endocrinology ; 153(11): 5212-21, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23011918

ABSTRACT

RCAN1 is a chromosome 21 gene that controls secretion in endocrine cells, regulates mitochondrial function, and is sensitive to oxidative stress. Regulator of calcineurin 1 (RCAN1) is also an endogenous inhibitor of the protein phosphatase calcineurin, the inhibition of which leads to hypoinsulinemia and diabetes in humans and mice. However, the presence or the role of RCAN1 in insulin-secreting ß-cells and its potential role in the pathogenesis of diabetes is unknown. Hence, the aim of this study is to investigate the presence of RCAN1 in ß-cells and identify its role in ß-cell function. RCAN1 is expressed in mouse islets and in the cytosol of pancreatic ß-cells. We find RCAN1 is a glucose-responsive gene with a 1.5-fold increase in expression observed in pancreatic islets in response to chronic hyperglycemia. The overexpression of the human RCAN1.1 isoform in mice under the regulation of its endogenous promoter causes diabetes, age-associated hyperglycemia, reduced glucose tolerance, hypoinsulinemia, loss of ß-cells, reduced ß-cell insulin secretion, aberrant mitochondrial reactive oxygen species production, and the down-regulation of key ß-cell genes. Our data therefore identifies a novel molecular link between the overexpression of RCAN1 and ß-cell dysfunction. The glucose-responsive nature of RCAN1 provides a potential mechanism of action associated with the ß-cell dysfunction observed in diabetes.


Subject(s)
Diabetes Mellitus/metabolism , Glucose Intolerance/metabolism , Hyperglycemia/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Muscle Proteins/metabolism , Animals , Calcium-Binding Proteins , Diabetes Mellitus/genetics , Diabetes Mellitus/pathology , Glucose Intolerance/genetics , Glucose Intolerance/pathology , Hyperglycemia/genetics , Hyperglycemia/pathology , Insulin Secretion , Insulin-Secreting Cells/pathology , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mitochondria/genetics , Mitochondria/metabolism , Muscle Proteins/genetics , Reactive Oxygen Species/metabolism
8.
Mol Pain ; 7: 95, 2011 Dec 08.
Article in English | MEDLINE | ID: mdl-22152428

ABSTRACT

BACKGROUND: Unmyelinated primary afferent nociceptors are commonly classified into two main functional types: those expressing neuropeptides, and non-peptidergic fibers that bind the lectin IB4. However, many small diameter primary afferent neurons neither contain any known neuropeptides nor bind IB4. Most express high levels of vesicular glutamate transporter 2 (VGluT2) and are assumed to be glutamatergic nociceptors but their terminations within the spinal cord are unknown. We used in vitro anterograde axonal tracing with Neurobiotin to identify the central projections of these putative glutamatergic nociceptors. We also quantitatively characterised the spatial arrangement of these terminals with respect to those that expressed the neuropeptide, calcitonin gene-related peptide (CGRP). RESULTS: Neurobiotin-labeled VGluT2-immunoreactive (IR) terminals were restricted to lamina I, with a medial-to-lateral distribution similar to CGRP-IR terminals. Most VGluT2-IR terminals in lateral lamina I were not labeled by Neurobiotin implying that they arose mainly from central neurons. 38 ± 4% of Neurobiotin-labeled VGluT2-IR terminals contained CGRP-IR. Conversely, only 17 ± 4% of Neurobiotin-labeled CGRP-IR terminals expressed detectable VGluT2-IR. Neurobiotin-labeled VGluT2-IR or CGRP-IR terminals often aggregated into small clusters or microdomains partially surrounding intrinsic lamina I neurons. CONCLUSIONS: The central terminals of primary afferents which express high levels of VGluT2-IR but not CGRP-IR terminate mainly in lamina I. The spatial arrangement of VGluT2-IR and CGRP-IR terminals suggest that lamina I neurons receive convergent inputs from presumptive nociceptors that are primarily glutamatergic or peptidergic. This reveals a previously unrecognized level of organization in lamina I consistent with the presence of multiple nociceptive processing pathways.


Subject(s)
Neurons, Afferent/metabolism , Posterior Horn Cells/metabolism , Spinal Cord/metabolism , Vesicular Glutamate Transport Protein 2/metabolism , Animals , Immunohistochemistry , Mice , Mice, Inbred C57BL , Nociceptors/metabolism , Presynaptic Terminals/metabolism , Receptors, Calcitonin Gene-Related Peptide/metabolism
9.
Virology ; 348(1): 141-55, 2006 Apr 25.
Article in English | MEDLINE | ID: mdl-16445956

ABSTRACT

Astrocytes persistently infected with HIV-1 can transmit virus to CD4+ cells, suggesting that astrocytes may be a source of viral persistence and dissemination in the brain. In the present study, we investigated the fate of HIV-1 upon infection of astrocytes. HIV-1 was observed in vesicle-like structures. Unspliced genomic RNA and extrachromosomal HIV-1 DNA were detected in astrocytes, with levels declining over time. The extrachromosomal viral DNA was not de novo reverse transcribed in astrocytes but most likely the products of intravirion reverse transcription present in the virus inoculum. Integrated HIV-1 DNA was not detected in assays sensitive to detect 2 integrated copies of provirus. However, the majority of astrocyte cultures released infectious virus that could be transmitted to CD4+ cells. Our findings suggest a novel pathway of HIV-1 uptake and release in astrocytes that does not necessarily require virus replication, which may contribute to persistence and spread of HIV-1 in the brain.


Subject(s)
Astrocytes/virology , HIV-1/physiology , Astrocytes/chemistry , CD4-Positive T-Lymphocytes/virology , Cytoplasmic Vesicles/virology , DNA, Viral/analysis , HIV Core Protein p24/analysis , Humans , Microscopy, Confocal , Microscopy, Electron, Transmission , Models, Biological , RNA, Viral/analysis , Time Factors , Virus Integration
SELECTION OF CITATIONS
SEARCH DETAIL
...