Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Physiol Genomics ; 56(3): 247-264, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38073491

ABSTRACT

Chronic intestinal inflammation is a poorly understood manifestation of cystic fibrosis (CF), which may be refractory to ion channel CF transmembrane conductance regulator (CFTR) modulator therapy. People with CF exhibit intestinal dysbiosis, which has the potential for stimulating intestinal and systemic inflammation. CFTR is expressed in organ epithelia, leukocytes, and other tissues. Here, we investigate the contribution of intestinal epithelium-specific loss of Cftr [iCftr knockout (KO)] to dysbiosis and inflammation in mice treated with either of two antiobstructive dietary regimens necessary to maintain CF mouse models [polyethylene glycol (PEG) laxative or a liquid diet (LiqD)]. Feces collected from iCftr KO mice and their wild-type (WT) sex-matched littermates were used to measure fecal calprotectin to evaluate inflammation and to perform 16S rRNA sequencing to characterize the gut microbiome. Fecal calprotectin was elevated in iCftr KO relative to WT mice that consumed either PEG or LiqD. PEG iCftr KO mice did not show a change in α diversity versus WT mice but demonstrated a significant difference in microbial composition (ß diversity) with included increases in the phylum Proteobacteria, the family Peptostreptococcaceae, four genera of Clostridia including C. innocuum, and the mucolytic genus Akkermansia. Fecal microbiome analysis of LiqD-fed iCftr KO mice showed both decreased α diversity and differences in microbial composition with increases in the Proteobacteria family Enterobacteriaceae, Firmicutes families Clostridiaceae and Peptostreptococcaceae, and enrichment of Clostridium perfringens, C. innocuum, C. difficile, mucolytic Ruminococcus gnavus, and reduction of Akkermansia. It was concluded that epithelium-specific loss of Cftr is a major driver of CF intestinal dysbiosis and inflammation with significant similarities to previous studies of pan Cftr KO mice.NEW & NOTEWORTHY Chronic intestinal inflammation is a manifestation of cystic fibrosis (CF), a disease caused by loss of the anion channel CF transmembrane conductance regulator (CFTR) that is expressed in many tissues. This study shows that intestinal epithelial cell-specific loss of CFTR [inducible Cftr knockout (KO)] in mice is sufficient to induce intestinal dysbiosis and inflammation. Experiments were performed on mice consuming two dietary regimens routinely used to prevent obstruction in CF mice.


Subject(s)
Clostridioides difficile , Cystic Fibrosis , Intestinal Obstruction , Animals , Humans , Mice , Clostridioides difficile/genetics , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Dysbiosis/microbiology , Expectorants/therapeutic use , Feces , Inflammation , Leukocyte L1 Antigen Complex/therapeutic use , Mice, Inbred CFTR , Mice, Knockout , RNA, Ribosomal, 16S
2.
bioRxiv ; 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37546931

ABSTRACT

Chronic intestinal inflammation is a poorly understood manifestation of Cystic Fibrosis (CF), which may be refractory to ion channel CFTR modulator therapy. People with CF exhibit intestinal dysbiosis which has potential for stimulating intestinal and systemic inflammation. CFTR is expressed in organ epithelia and in the leukocyte population. Here, we investigate the contribution of intestinal epithelial-specific loss of Cftr (iCftr KO) to dysbiosis and inflammation in mice treated with either of two anti-obstructive dietary regimens necessary to maintain CF mouse models (PEG laxative or a liquid diet, LiqD). Feces collected from iCftr KO mice and their wildtype (WT) sex-matched littermates were used to measure fecal calprotectin and to perform 16S rRNA sequencing to characterize the gut microbiome. Fecal calprotectin was elevated in iCftr KO relative to WT samples of mice consuming either PEG or LiqD. PEG iCftr KO mice did not show a change in α-diversity versus WT but demonstrated a significant difference in microbial composition (ß-diversity) with increases in phylum Proteobacteria , family Peptostreptococcaceae , four genera of Clostridia including C. innocuum , and mucolytic genus Akkermansia . Fecal microbiome analysis of LiqD iCftr KO mice showed both decreased α-diversity and differences in microbial composition with increases in Proteobacteria family Enterobacteriaceae , Firmicutes families Clostridiaceae and Peptostreptococcaceae , and enrichment of Clostridium perfringens , C. innocuum , C. difficile , mucolytic Ruminococcus gnavus , and reduction of Akkermansia . It was concluded that epithelial-specific loss of Cftr is a major driver of CF intestinal dysbiosis and inflammation with significant similarities to previous studies of global Cftr KO mice. New and noteworthy: Chronic intestinal inflammation is a manifestation of cystic fibrosis (CF), a disease caused by loss of the anion channel CFTR that is expressed in many tissues. This study shows that intestinal epithelial cell-specific loss of CFTR (iCftr KO) in mice is sufficient to induce intestinal dysbiosis and inflammation. Studies were performed on mice consuming either dietary regimen (PEG laxative or liquid diet) routinely used to prevent obstruction in CF mice.

3.
Am J Physiol Gastrointest Liver Physiol ; 322(2): G282-G293, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34878935

ABSTRACT

Goblet cell hyperplasia is an important manifestation of cystic fibrosis (CF) disease in epithelial-lined organs. Explants of CF airway epithelium show normalization of goblet cell numbers; therefore, we hypothesized that small intestinal enteroids from Cftr knockout (KO) mice would not exhibit goblet cell hyperplasia. Toll-like receptors 2 and 4 (Tlr2 and Tlr4) were investigated as markers of inflammation and influence on goblet cell differentiation. Ex vivo studies found goblet cell hyperplasia in Cftr KO jejunum compared with wild-type (WT) mice. IL-13, SAM pointed domain-containing ETS transcription factor (Spdef), Tlr2, and Tlr4 protein expression were increased in Cftr KO intestine relative to WT. In contrast, WT and Cftr KO enteroids did not exhibit differences in basal or IL-13-stimulated goblet cell numbers, or differences in expression of Tlr2, Tlr4, and Spdef. Ileal goblet cell numbers in Cftr KO/Tlr4 KO and Cftr KO/Tlr2 KO mice were not different from Cftr KO mice, but enumeration was confounded by altered mucosal morphology. Treatment with Tlr4 agonist LPS did not affect goblet cell numbers in WT or Cftr KO enteroids, whereas the Tlr2 agonist Pam3Csk4 stimulated goblet cell hyperplasia in both genotypes. Pam3Csk4 stimulation of goblet cell numbers was associated with suppression of Notch1 and Neurog3 expression and upregulated determinants of goblet cell differentiation. We conclude that goblet cell hyperplasia and inflammation of the Cftr KO small intestine are not exhibited by enteroids, indicating that this manifestation of CF intestinal disease is not epithelial-automatous but secondary to the altered CF intestinal environment.NEW & NOTEWORTHY Studies of small intestinal organoids from cystic fibrosis (CF) mice show that goblet cell hyperplasia and increased Toll-like receptor 2/4 expression are not primary manifestations of the CF intestine. Intestinal goblet cell hyperplasia in the CF mice was not strongly altered by genetic ablation of Tlr2 and Tlr 4, but could be induced in both wild-type and CF intestinal organoids by a Tlr2-dependent suppression of Notch signaling.


Subject(s)
Goblet Cells/metabolism , Hyperplasia/metabolism , Inflammation/metabolism , Intestines/metabolism , Animals , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Mice, Knockout , Organoids/metabolism , Signal Transduction/physiology
4.
Nanomedicine (Lond) ; 16(21): 1857-1872, 2021 09.
Article in English | MEDLINE | ID: mdl-34282923

ABSTRACT

The aim of this study was to investigate the distribution, tolerance, and anticancer and antiviral activity of Zn-based physiometacomposites (PMCs). Manganese, iron, nickel and cobalt-doped ZnO, ZnS or ZnSe were synthesized. Cell uptake, distribution into 3D culture and mice, and biochemical and chemotherapeutic activity were studied by fluorescence/bioluminescence, confocal microscopy, flow cytometry, viability, antitumor and virus titer assays. Luminescence and inductively coupled plasma mass spectrometry analysis showed that nanoparticle distribution was liver >spleen >kidney >lung >brain, without tissue or blood pathology. Photophysical characterization as ex vivo tissue probes and LL37 peptide, antisense oligomer or aptamer delivery targeting RAS/Ras binding domain (RBD) was investigated. Treatment at 25 µg/ml for 48 h showed ≥98-99% cell viability, 3D organoid uptake, 3-log inhibition of ß-Galactosidase and porcine reproductive respiratory virus infection. Data support the preclinical development of PMCs for imaging and delivery targeting cancer and infectious disease.


Subject(s)
Antiviral Agents , Nanoparticles , Animals , Antiviral Agents/pharmacology , Cell Line, Tumor , Cell Survival , Luminescence , Mice , Swine , Zinc/pharmacology
5.
Sci Rep ; 9(1): 11828, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31413336

ABSTRACT

Small-molecule modulators of cystic fibrosis transmembrane conductance regulator (CFTR) biology show promise in the treatment of cystic fibrosis (CF). A Cftr knockout (Cftr KO) mouse expressing mutants of human CFTR would advance in vivo testing of new modulators. A bacterial artificial chromosome (BAC) carrying the complete hCFTR gene including regulatory elements within 40.1 kb of DNA 5' and 25 kb of DNA 3' to the gene was used to generate founder mice expressing hCFTR. Whole genome sequencing indicated a single integration site on mouse chromosome 8 (8qB2) with ~6 gene copies. hCFTR+ offspring were bred to murine Cftr KO mice, producing hCFTR+/mCftr- (H+/m-) mice, which had normal survival, growth and goblet cell function as compared to wild-type (WT) mice. Expression studies showed hCFTR protein and transcripts in tissues typically expressing mCftr. Functionally, nasal potential difference and large intestinal short-circuit (Isc) responses to cAMP stimulation were similar in magnitude to WT mice, whereas small intestinal cAMP ΔIsc responses were reduced. A BAC transgenic mouse with functional hCFTR under control of its regulatory elements has been developed to enable the generation of mouse models of hCFTR mutations by gene editing for in vivo testing of new CF therapies.


Subject(s)
Chromosomes, Artificial, Bacterial , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Regulatory Sequences, Nucleic Acid , Transgenes , Animals , Exocytosis , Gene Editing , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic
6.
Cell Mol Gastroenterol Hepatol ; 5(3): 253-271, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29675451

ABSTRACT

BACKGROUND & AIMS: Cystic fibrosis (CF) patients and CF mouse models have increased risk for gastrointestinal tumors. CF mice show augmented intestinal proliferation of unknown etiology and an altered intestinal environment. We examined the role of the cystic fibrosis transmembrane conductance regulator (Cftr) in Wnt/ß-catenin signaling, stem cell proliferation, and its functional expression in the active intestinal stem cell (ISC) population. Dysregulation of intracellular pH (pHi) in CF ISCs was investigated for facilitation of Wnt/ß-catenin signaling. METHODS: Crypt epithelia from wild-type (WT) and CF mice were compared ex vivo and in intestinal organoids (enteroids) for proliferation and Wnt/ß-catenin signaling by standard assays. Cftr in ISCs was assessed by immunoblot of sorted Sox9 enhanced green fluorescent protein(EGFP) intestinal epithelia and pHi regulation by confocal microfluorimetry of leucine-rich G-protein-coupled receptor 5 ISCs. Plasma membrane association of the Wnt transducer Dishevelled 2 (Dvl2) was assessed by fluorescence imaging of live enteroids from WT and CF mice crossed with Dvl2-EGFP/ACTB-tdTomato,-EGFP)Luo/J (RosamT/mG) mice. RESULTS: Relative to WT, CF intestinal crypts showed an ∼30% increase in epithelial and Lgr5+ ISC proliferation and increased Wnt/ß-catenin signaling. Cftr was expressed in Sox9EGFPLo ISCs and loss of Cftr induced an alkaline pHi in ISCs. CF crypt-base columnar cells showed a generalized increase in plasma membrane Dvl2-EGFP association as compared with WT. Dvl2-EGFP membrane association was charge- and pH-dependent and increased in WT crypt-base columnar cells by Cftr inhibition. CONCLUSIONS: CF intestine shows increased ISC proliferation and Wnt/ß-catenin signaling. Loss of Cftr increases pHi in ISCs, which stabilizes the plasma membrane association of the Wnt transducer Dvl, likely facilitating Wnt/ß-catenin signaling. Absence of Cftr-dependent suppression of ISC proliferation in the CF intestine may contribute to increased risk for intestinal tumors.

8.
Am J Physiol Gastrointest Liver Physiol ; 310(2): G70-80, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26542396

ABSTRACT

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl(-) and HCO3 (-) efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3 (-))-loading proteins and upregulation of the basolateral membrane HCO3 (-)-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl(-)/HCO3 (-) exchange with maximized gradients, it also had increased intracellular Cl(-) concentration relative to wild-type. Pharmacological reduction of intracellular Cl(-) concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl(-) and HCO3 (-) efflux, which impairs pHi regulation by Ae2. Retention of Cl(-) and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine.


Subject(s)
Bicarbonates/metabolism , Chloride-Bicarbonate Antiporters/metabolism , Chlorides/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Intestinal Mucosa/metabolism , Animals , Chloride-Bicarbonate Antiporters/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Hydrogen-Ion Concentration , Mice , Mice, Knockout
9.
J Clin Invest ; 125(3): 1056-68, 2015 Mar 02.
Article in English | MEDLINE | ID: mdl-25642775

ABSTRACT

Cystic fibrosis (CF) intestinal disease is associated with the pathological manifestation mucoviscidosis, which is the secretion of tenacious, viscid mucus that plugs ducts and glands of epithelial-lined organs. Goblet cells are the principal cell type involved in exocytosis of mucin granules; however, little is known about the exocytotic process of goblet cells in the CF intestine. Using intestinal organoids from a CF mouse model, we determined that CF goblet cells have altered exocytotic dynamics, which involved intrathecal granule swelling that was abruptly followed by incomplete release of partially decondensated mucus. Some CF goblet cells exhibited an ectopic granule location and distorted cellular morphology, a phenotype that is consistent with retrograde intracellular granule movement during exocytosis. Increasing the luminal concentration of bicarbonate, which mimics CF transmembrane conductance regulator-mediated anion secretion, increased spontaneous degranulation in WT goblet cells and improved exocytotic dynamics in CF goblet cells; however, there was still an apparent incoordination between granule decondensation and exocytosis in the CF goblet cells. Compared with those within WT goblet cells, mucin granules within CF goblet cells had an alkaline pH, which may adversely affect the polyionic composition of the mucins. Together, these findings indicate that goblet cell dysfunction is an epithelial-autonomous defect in the CF intestine that likely contributes to the pathology of mucoviscidosis and the intestinal manifestations of obstruction and inflammation.


Subject(s)
Cystic Fibrosis/pathology , Exocytosis , Goblet Cells/metabolism , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Hydrogen-Ion Concentration , Intestinal Mucosa/pathology , Mice, Knockout , Mucins/metabolism , Secretory Vesicles/metabolism
10.
Am J Physiol Cell Physiol ; 302(10): C1492-503, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22403785

ABSTRACT

Physiological studies of intact crypt epithelium have been limited by problems of accessibility in vivo and dedifferentiation in standard primary culture. Investigations of murine intestinal stem cells have recently yielded a primary intestinal culture in three-dimensional gel suspension that recapitulates crypt structure and epithelial differentiation (Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, Van Es JH, Abo A, Kujala P, Peters PJ, Clevers H. Nature 459: 262-265, 2009). We investigated the utility of murine intestinal crypt cultures (termed "enteroids") for physiological studies of crypt epithelium by focusing on the transport activity of the cystic fibrosis transmembrane conductance regulator Cftr. Enteroids had multiple crypts with well-differentiated goblet and Paneth cells that degranulated on exposure to the muscarinic agonist carbachol. Modified growth medium provided a crypt proliferation rate, as measured by 5-ethynyl-2'-deoxyuridine labeling, which was similar to proliferation in vivo. Immunoblots demonstrated equivalent Cftr expression in comparisons of freshly isolated crypts with primary and passage 1 enteroids. Apparent enteroid differences in mRNA expression of other transporters were primarily associated with villous epithelial contamination of freshly isolated crypts. Microelectrode analysis revealed cAMP-stimulated membrane depolarization in enteroid epithelium from wild-type (WT) but not Cftr knockout (KO) mice. Morphological and microfluorimetric studies, respectively, demonstrated Cftr-dependent cell shrinkage and lower intracellular pH in WT enteroid epithelium in contrast to Cftr KO epithelium or WT epithelium treated with Cftr inhibitor 172. We conclude that crypt epithelium of murine enteroids exhibit Cftr expression and activity that recapitulates crypt epithelium in vivo. Enteroids provide a primary culture model that is suitable for physiological studies of regenerating crypt epithelium.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/physiology , Intestinal Mucosa/cytology , Intestinal Mucosa/physiology , Intestine, Small/cytology , Intestine, Small/physiology , Animals , Mice , Mice, Inbred CFTR , Mice, Knockout , Organ Culture Techniques/methods
11.
Methods Mol Biol ; 741: 489-509, 2011.
Article in English | MEDLINE | ID: mdl-21594803

ABSTRACT

Bicarbonate serves many functions in our body. It is the predominant buffer maintaining a physiological pH in the blood and within our cells. It is also essential for proper digestion of nutrients and solubilization of complex protein mixtures, such as digestive enzymes and mucins, in epithelial secretions. Transepithelial HCO3- transport also drives net fluid secretion in many epithelial tissues including those in the gastrointestinal and reproductive tracts as well as the airways. Indeed, defective bicarbonate secretion is a hallmark of the pathophysiology in the pancreas of most patients suffering from cystic fibrosis. Some, but not all, disease-causing mutations in the CF gene lead to impaired bicarbonate transport when expressed in heterologous systems. Recently developed pharmacological modulators of mutant CFTR have demonstrated an ability to activate chloride transport but little is known about whether they also increase the secretion of bicarbonate. It is therefore essential to assay bicarbonate transport when studying the effect of small molecules on CFTR function. However, due to the chaotropic nature of the ion, the measurement of the absolute bicarbonate concentration and its permeability through CFTR is far from trivial. In this chapter we will review some of the techniques available to measure bicarbonate transport through single ion channels, individual cells, and intact epithelial layers.


Subject(s)
Bicarbonates/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelium/metabolism , Fluorometry/methods , Patch-Clamp Techniques/methods , Biological Transport , Calibration , Electric Conductivity , Fluorescent Dyes/metabolism , Humans , Hydrogen-Ion Concentration , Permeability
12.
Am J Physiol Cell Physiol ; 300(2): C276-86, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21068358

ABSTRACT

The recent proposal that Dra/Slc26a3 mediates electrogenic 2Cl(-)/1HCO(3)(-) exchange suggests a required revision of classical concepts of electroneutral Cl(-) transport across epithelia such as the intestine. We investigated 1) the effect of endogenous Dra Cl(-)/HCO(3)(-) activity on apical membrane potential (V(a)) of the cecal surface epithelium using wild-type (WT) and knockout (KO) mice; and 2) the electrical properties of Cl(-)/(OH(-))HCO(3)(-) exchange by mouse and human orthologs of Dra expressed in Xenopus oocytes. Ex vivo (36)Cl(-) fluxes and microfluorometry revealed that cecal Cl(-)/HCO(3)(-) exchange was abolished in the Dra KO without concordant changes in short-circuit current. In microelectrode studies, baseline V(a) of Dra KO surface epithelium was slightly hyperpolarized relative to WT but depolarized to the same extent as WT during luminal Cl(-) substitution. Subsequent studies indicated that Cl(-)-dependent V(a) depolarization requires the anion channel Cftr. Oocyte studies demonstrated that Dra-mediated exchange of intracellular Cl(-) for extracellular HCO(3)(-) is accompanied by slow hyperpolarization and a modest outward current, but that the steady-state current-voltage relationship is unaffected by Cl(-) removal or pharmacological blockade. Further, Dra-dependent (36)Cl(-) efflux was voltage-insensitive in oocytes coexpressing the cation channels ENaC or ROMK. We conclude that 1) endogenous Dra and recombinant human/mouse Dra orthologs do not exhibit electrogenic 2Cl(-)/1HCO(3)(-) exchange; and 2) acute induction of Dra Cl(-)/HCO(3)(-) exchange is associated with secondary membrane potential changes representing homeostatic responses. Thus, participation of Dra in coupled NaCl absorption and in uncoupled HCO(3)(-) secretion remains compatible with electroneutrality of these processes, and with the utility of electroneutral transport models for predicting epithelial responses in health and disease.


Subject(s)
Antiporters/metabolism , Chloride-Bicarbonate Antiporters/metabolism , Animals , Antiporters/genetics , Bicarbonates/metabolism , Cecum/metabolism , Chloride-Bicarbonate Antiporters/genetics , Chlorides/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/physiology , Female , Humans , Male , Membrane Potentials , Mice , Mice, Knockout , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sulfate Transporters
13.
Am J Respir Cell Mol Biol ; 45(2): 221-8, 2011 Aug.
Article in English | MEDLINE | ID: mdl-20639462

ABSTRACT

The respiratory epithelium lining the airway relies on mucociliary clearance and a complex network of inflammatory mediators to protect the lung. Alterations in the composition and volume of the periciliary liquid layer, as occur in cystic fibrosis (CF), lead to impaired mucociliary clearance and persistent airway infection. Moreover, the respiratory epithelium releases chemoattractants after infection, inciting airway inflammation. However, characterizing the inflammatory response of primary human airway epithelial cells to infection can be challenging because of genetic heterogeneity. Using well-characterized, differentiated, primary murine tracheal cells grown at an air-liquid interface, which provides an in vitro polarized epithelial model, we compared inflammatory gene expression and secretion in wild-type and ΔF508 CF airway cells after infection with Pseudomonas aeruginosa. The expression of several CXC-chemokines, including macrophage inflammatory protein-2, small inducible cytokine subfamily member 2, lipopolysaccharide-induced chemokine, and interferon-inducible cytokine-10, was markedly increased after infection, and these proinflammatory mediators were asymmetrically released from the airway epithelium, predominantly from the basolateral surface. Equal amounts of CXC-chemokines were released from wild-type and CF cells. Secreted mediators were concentrated in the thin, periciliary fluid layer, and the dehydrated apical microenvironment of CF airway epithelial cells amplified the inflammatory signal, potentially resulting in high chemokine concentration gradients across the epithelium. Consistent with this observation, the enhanced chemotaxis of wild-type neutrophils was detected in CF airway epithelial cultures, compared with wild-type cells. These data suggest that P. aeruginosa infection of the airway epithelium induces the expression and polarized secretion of CXC-chemokines, and the increased concentration gradient across the CF airway leads to an exaggerated inflammatory response.


Subject(s)
Chemokines, CXC/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/physiology , Cystic Fibrosis/metabolism , Inflammation Mediators/metabolism , Respiratory Mucosa/metabolism , Animals , Cells, Cultured , Cystic Fibrosis/genetics , Cytokines/metabolism , Electrophysiology , Humans , Inflammation , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/cytology , Neutrophils/metabolism , Pseudomonas Infections/metabolism , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/isolation & purification , Respiratory Mucosa/microbiology , Respiratory Mucosa/pathology , Signal Transduction
14.
Am J Physiol Gastrointest Liver Physiol ; 298(5): G683-91, 2010 May.
Article in English | MEDLINE | ID: mdl-20150244

ABSTRACT

The majority of dietary amino acids are absorbed via the H(+)-di-/tripeptide transporter Pept1 of the small intestine. Proton influx via Pept1 requires maintenance of intracellular pH (pH(i)) to sustain the driving force for peptide absorption. The apical membrane Na(+)/H(+) exchanger Nhe3 plays a major role in minimizing epithelial acidification during H(+)-di-/tripeptide absorption. However, the contributions of HCO(3)(-)-dependent transporters to this process have not been elucidated. In this study, we investigate the role of putative anion transporter-1 (Pat-1), an apical membrane anion exchanger, in epithelial pH(i) regulation during H(+)-peptide absorption. Using wild-type (WT) and Pat-1(-) mice, Ussing chambers were employed to measure the short-circuit current (I(sc)) associated with Pept1-mediated glycyl-sarcosine (Gly-Sar) absorption. Microfluorometry was used to measure pH(i) and Cl(-)/HCO(3)(-) exchange in the upper villous epithelium. In CO(2)/HCO(3)(-)-buffered Ringers, WT small intestine showed significant Gly-Sar-induced I(sc) and efficient pH(i) regulation during pharmacological inhibition of Nhe3 activity. In contrast, epithelial acidification and reduced I(sc) response to Gly-Sar exposure occurred during pharmacological inhibition of Cl(-)/HCO(3)(-) exchange and in the Pat-1(-) intestine. Pat-1 interacts with carbonic anhydrase II (CAII), and studies using CAII(-) intestine or the pharmacological inhibitor methazolamide on WT intestine resulted in increased epithelial acidification during Gly-Sar exposure. Increased epithelial acidification during Gly-Sar exposure also occurred in WT intestine during inhibition of luminal extracellular CA activity. Measurement of Cl(-)/HCO(3)(-) exchange in the presence of Gly-Sar revealed an increased rate of Cl(-)(OUT)/HCO(3)(-)(IN) exchange that was both Pat-1 dependent and CA dependent. In conclusion, Pat-1 Cl(-)/HCO(3)(-) exchange contributes to pH(i) regulation in the villous epithelium during H(+)-dipeptide absorption, possibly by providing a HCO(3)(-) import pathway.


Subject(s)
Antiporters/physiology , Dipeptides/metabolism , Animals , Bicarbonates/metabolism , Carbonic Anhydrase II/metabolism , Duodenum/metabolism , Hydrogen-Ion Concentration , Mice , Sulfate Transporters
15.
J Physiol ; 588(Pt 4): 713-24, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-20026617

ABSTRACT

Cystic fibrosis is caused by mutations in CFTR, the cystic fibrosis transmembrane conductance regulator gene. Disruption of CFTR-mediated anion conductance results in defective fluid and electrolyte movement in the epithelial cells of organs such as the pancreas, airways and sweat glands, but the function of CFTR in salivary glands is unclear. Salivary gland acinar cells produce an isotonic, plasma-like fluid, which is subsequently modified by the ducts to produce a hypotonic, NaCl-depleted final saliva. In the present study we investigated whether submandibular salivary glands (SMGs) in F508 mice (Cftr(F/F)) display ion transport defects characteristic of cystic fibrosis in other tissues. Immunolocalization and whole-cell recordings demonstrated that Cftr and the epithelial Na(+) (ENaC) channels are co-expressed in the apical membrane of submandibular duct cells, consistent with the significantly higher saliva [NaCl] observed in vivo in Cftr(F/F) mice. In contrast, Cftr and ENaC channels were not detected in acinar cells, nor was saliva production affected in Cftr(F/F) mice, implying that Cftr contributes little to the fluid secretion process in the mouse SMG. To identify the source of the NaCl absorption defect in Cftr(F/F) mice, saliva was collected from ex vivo perfused SMGs. Cftr(F/F) glands secreted saliva with significantly increased [NaCl]. Moreover, pharmacological inhibition of either Cftr or ENaC in the ex vivo SMGs mimicked the Cftr(F/F) phenotype. In summary, our results demonstrate that NaCl absorption requires and is likely to be mediated by functionally dependent Cftr and ENaC channels localized to the apical membranes of mouse salivary gland duct cells.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/physiology , Cystic Fibrosis/metabolism , Epithelial Sodium Channels/physiology , Sodium Chloride/metabolism , Submandibular Gland/metabolism , Absorption , Animals , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelial Sodium Channels/genetics , Female , Male , Mice , Sweat Glands/metabolism , Sweat Glands/physiology
16.
Am J Physiol Gastrointest Liver Physiol ; 296(6): G1151-66, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19342508

ABSTRACT

The Ussing chamber provides a physiological system to measure the transport of ions, nutrients, and drugs across various epithelial tissues. One of the most studied epithelia is the intestine, which has provided several landmark discoveries regarding the mechanisms of ion transport processes. Adaptation of this method to mouse intestine adds the dimension of investigating genetic loss or gain of function as a means to identify proteins or processes affecting transepithelial transport. In this review, the principles underlying the use of Ussing chambers are outlined including limitations and advantages of the technique. With an emphasis on mouse intestinal preparations, the review covers chamber design, commercial equipment sources, tissue preparation, step-by-step instruction for operation, troubleshooting, and examples of interpretation difficulties. Specialized uses of the Ussing chamber such as the pH stat technique to measure transepithelial bicarbonate secretion and isotopic flux methods to measure net secretion or absorption of substrates are discussed in detail, and examples are given for the adaptation of Ussing chamber principles to other measurement systems. The purpose of the review is to provide a practical guide for investigators who are new to the Ussing chamber method.


Subject(s)
Intestines/physiology , Organ Culture Techniques/instrumentation , Organ Culture Techniques/methods , Animals , Biological Transport/physiology , Colon/physiology , Duodenum/physiology , Intestinal Absorption/physiology , Intestinal Mucosa/physiology , Mice
17.
Gastroenterology ; 136(3): 893-901, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19121635

ABSTRACT

BACKGROUND & AIMS: The current model of duodenal HCO(3)(-) secretion proposes that basal secretion results from Cl(-)/HCO(3)(-) exchange, whereas cyclic adenosine monophosphate (cAMP)-stimulated secretion depends on a cystic fibrosis transmembrane conductance regulator channel (Cftr)-mediated HCO(3)(-) conductance. However, discrepancies in applying the model suggest that Cl(-)/HCO(3)(-) exchange also contributes to cAMP-stimulated secretion. Of 2 candidate Cl(-)/HCO(3)(-) exchangers, studies of putative anion transporter-1 knockout (KO) mice find little contribution of putative anion transporter-1 to basal or cAMP-stimulated secretion. Therefore, the role of down-regulated in adenoma (Dra) in duodenal HCO(3)(-) secretion was investigated using DraKO mice. METHODS: Duodenal HCO(3)(-) secretion was measured by pH stat in Ussing chambers. Apical membrane Cl(-)/HCO(3)(-) exchange was measured by microfluorometry of intracellular pH in intact villous epithelium. Dra expression was assessed by immunofluorescence. RESULTS: Basal HCO(3)(-) secretion was reduced approximately 55%-60% in the DraKO duodenum. cAMP-stimulated HCO(3)(-) secretion was reduced approximately 50%, but short-circuit current was unchanged, indicating normal Cftr activity. Microfluorimetry of villi demonstrated that Dra is the dominant Cl(-)/HCO(3)(-) exchanger in the lower villous epithelium. Dra expression increased from villous tip to crypt. DraKO and wild-type villi also demonstrated regulation of apical Na(+)/H(+) exchange by Cftr-dependent cell shrinkage during luminal Cl(-) substitution. CONCLUSIONS: In murine duodenum, Dra Cl(-)/HCO(3)(-) exchange is concentrated in the lower crypt-villus axis where it is subject to Cftr regulation. Dra activity contributes most basal HCO(3)(-) secretion and approximately 50% of cAMP-stimulated HCO(3)(-) secretion. Dra Cl(-)/HCO(3)(-) exchange should be considered in efforts to normalize HCO(3)(-) secretion in duodenal disorders such as ulcer disease and cystic fibrosis.


Subject(s)
Antiporters/genetics , Antiporters/metabolism , Bicarbonates/metabolism , Duodenum/metabolism , Acids/metabolism , Animals , Chloride-Bicarbonate Antiporters/pharmacokinetics , Cyclic AMP/metabolism , Down-Regulation/physiology , Hydrogen-Ion Concentration , Intestinal Mucosa/metabolism , Mice , Mice, Knockout , Sodium-Hydrogen Exchangers/antagonists & inhibitors , Sodium-Hydrogen Exchangers/metabolism , Sulfate Transporters
18.
Am J Physiol Gastrointest Liver Physiol ; 296(4): G886-98, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19164484

ABSTRACT

In cystic fibrosis, impaired secretion resulting from loss of activity of the cystic fibrosis transmembrane conductance regulator (CFTR) causes dehydration of intestinal contents and life-threatening obstructions. Conversely, impaired absorption resulting from loss of the NHE3 Na+/H+ exchanger causes increased fluidity of the intestinal contents and diarrhea. To test the hypothesis that reduced NHE3-mediated absorption could increase survival and prevent some of the intestinal pathologies of cystic fibrosis, Cftr/Nhe3 double heterozygous mice were mated and their offspring analyzed. Cftr-null mice lacking one or both copies of the NHE3 gene exhibited increased fluidity of their intestinal contents, which prevented the formation of obstructions and increased survival. Goblet cell hyperplasia was eliminated, but not the accumulation of Paneth cell granules or increased cell proliferation in the crypts. Microarray analysis of small intestine RNA from Cftr-null, NHE3-null, and double-null mice all revealed downregulation of genes involved in xenobiotic metabolism, including a cohort of genes involved in glutathione metabolism. Expression of energy metabolism genes was altered, but there were no changes in genes involved in inflammation. Total intracellular glutathione was increased in the jejunum of all of the mutants and the ratio of reduced to oxidized glutathione was reduced in Cftr-null mutants, indicating that CFTR deficiency affects intestinal glutathione metabolism. The data establish a major role for NHE3 in regulating the fluidity of the intestinal contents and show that reduced NHE3-mediated absorption reverses some of the intestinal pathologies of cystic fibrosis, thus suggesting that it may serve as a potential therapeutic target.


Subject(s)
Cystic Fibrosis/mortality , Intestinal Obstruction/prevention & control , Sodium-Hydrogen Exchangers/metabolism , Sodium/metabolism , Animals , Diarrhea , Gastrointestinal Contents/chemistry , Gastrointestinal Tract/pathology , Gene Expression Regulation/physiology , Genotype , Mice , Mutation , Sodium-Hydrogen Exchanger 3 , Sodium-Hydrogen Exchangers/genetics
19.
Gastroenterology ; 135(5): 1645-1653.e3, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18930060

ABSTRACT

BACKGROUND & AIMS: Electroneutral NaCl absorption across small intestine contributes importantly to systemic fluid balance. Disturbances in this process occur in both obstructive and diarrheal diseases, eg, cystic fibrosis, secretory diarrhea. NaCl absorption involves coupling of Cl(-)/HCO(3)(-) exchanger(s) primarily with Na(+)/H(+) exchanger 3 (Nhe3) at the apical membrane of intestinal epithelia. Identity of the coupling Cl(-)/HCO(3)(-) exchanger(s) was investigated using mice with gene-targeted knockout (KO) of Cl(-)/HCO(3)(-) exchangers: Slc26a3, down-regulated in adenoma (Dra) or Slc26a6, putative anion transporter-1 (Pat-1). METHODS: Intracellular pH (pH(i)) of intact jejunal villous epithelium was measured by ratiometric microfluoroscopy. Ussing chambers were used to measure transepithelial (22)Na(36)Cl flux across murine jejunum, a site of electroneutral NaCl absorption. Expression was estimated using immunofluorescence and quantitative polymerase chain reaction. RESULTS: Basal pH(i) of DraKO epithelium, but not Pat-1KO epithelium, was alkaline, whereas pH(i) in the Nhe3KO was acidic relative to wild-type. Altered pH(i) was associated with robust Na(+)/H(+) and Cl(-)/HCO(3)(-) exchange activity in the DraKO and Nhe3KO villous epithelium, respectively. Contrary to genetic ablation, pharmacologic inhibition of Nhe3 in wild-type did not alter pH(i) but coordinately inhibited Dra. Flux studies revealed that Cl(-) absorption was essentially abolished (>80%) in the DraKO and little changed (<20%) in the Pat-1KO jejunum. Net Na(+) absorption was unaffected. Immunofluorescence demonstrated modest Dra expression in the jejunum relative to large intestine. Functional and expression studies did not indicate compensatory changes in relevant transporters. CONCLUSIONS: These studies provide functional evidence that Dra is the major Cl(-)/HCO(3)(-) exchanger coupled with Nhe3 for electroneutral NaCl absorption across mammalian small intestine.


Subject(s)
Adenoma/genetics , Chloride-Bicarbonate Antiporters/genetics , Down-Regulation , Intestinal Absorption/physiology , Jejunum/metabolism , RNA, Neoplasm , Sodium Chloride/metabolism , Adenoma/metabolism , Adenoma/pathology , Animals , Chloride-Bicarbonate Antiporters/metabolism , Disease Models, Animal , Fluorescent Antibody Technique , Hydrogen-Ion Concentration , Intracellular Fluid/metabolism , Ion Transport/physiology , Jejunal Neoplasms/genetics , Jejunal Neoplasms/metabolism , Jejunal Neoplasms/pathology , Jejunum/pathology , Mice , Mice, Mutant Strains , Polymerase Chain Reaction
20.
Am J Physiol Gastrointest Liver Physiol ; 295(4): G791-7, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18719001

ABSTRACT

Ischemic injury induces breakdown of the intestinal barrier. Recent studies in porcine postischemic tissues indicate that inhibition of NHE2 results in enhanced recovery of barrier function in vitro via a process involving interepithelial tight junctions. To further study this process, recovery of barrier function was assessed in wild-type (NHE2(+/+)) and NHE2(-/-) mice in vivo and wild-type mice in vitro. Mice were subjected to complete mesenteric ischemia in vivo, after which barrier function was measured by blood-to-lumen mannitol clearance over a 3-h recovery period or measurement of transepithelial electrical resistance (TER) in Ussing chambers immediately following ischemia. Tissues were assessed for expression of select junctional proteins. Compared with NHE2(+/+) mice, NHE2(-/-) mice had greater intestinal permeability during the postischemic recovery process. In contrast to prior porcine studies, pharmacological inhibition of NHE2 in postischemic tissues from wild-type mice also resulted in significant reductions in TER. Mucosa from NHE2(-/-) mice displayed a shift of occludin and claudin-1 expression to the Triton-X-soluble membrane fractions and showed disruption of occludin and claudin-1 localization patterns following injury. This was qualitatively and quantitatively recovered in NHE2(+/+) mice compared with NHE2(-/-) mice by the end of the 3-h recovery period. Serine phosphorylation of occludin and claudin-1 was downregulated in NHE2(-/-) postischemia compared with wild-type mice. These data indicate an important role for NHE2 in recovery of barrier function in mice via a mechanism involving tight junctions.


Subject(s)
Intestinal Mucosa/physiopathology , Sodium-Hydrogen Exchangers/physiology , Animals , Claudin-1 , Intestine, Small/blood supply , Ischemia/physiopathology , Mannitol/metabolism , Membrane Proteins/metabolism , Mice , Mice, Knockout , Occludin , Permeability , Phosphorylation , Sodium-Hydrogen Exchangers/genetics , Tight Junctions/metabolism , Tight Junctions/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...