Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 35(11): e22001, 2021 11.
Article in English | MEDLINE | ID: mdl-34674320

ABSTRACT

The pre-mRNA processing factor 4 kinase (PRP4K, also known as PRPF4B) is an essential gene. However, reduced PRP4K expression is associated with aggressive breast and ovarian cancer phenotypes including taxane therapy resistance, increased cell migration and invasion in vitro, and cancer metastasis in mice. These results are consistent with PRP4K being a haploinsufficient tumor suppressor. Increased cell migration and invasion is associated with epithelial-to-mesenchymal transition (EMT), but how reduced PRP4K levels affect normal epithelial cell migration or EMT has not been studied. Depletion of PRP4K by small hairpin RNA (shRNA) in non-transformed mammary epithelial cell lines (MCF10A, HMLE) reduced or had no effect on 2D migration in the scratch assay but resulted in greater invasive potential in 3D transwell assays. Depletion of PRP4K in mesenchymal triple-negative breast cancer cells (MDA-MB-231) resulted in both enhanced 2D migration and 3D invasion, with 3D invasion correlated with higher fibronectin levels in both MDA-MB-231 and MCF10A cells and without changes in E-cadherin. Induction of EMT in MCF10A cells, by treatment with WNT-5a and TGF-ß1, or depletion of eukaryotic translation initiation factor 3e (eIF3e) by shRNA, resulted in significantly reduced PRP4K expression. Mechanistically, induction of EMT by WNT-5a/TGF-ß1 reduced PRP4K transcript levels, whereas eIF3e depletion led to reduced PRP4K translation. Finally, reduced PRP4K levels after eIF3e depletion correlated with increased YAP activity and nuclear localization, both of which are reversed by overexpression of exogenous PRP4K. Thus, PRP4K is a haploinsufficient tumor suppressor negatively regulated by EMT, that when depleted in normal mammary cells can increase cell invasion without inducing full EMT.


Subject(s)
Epithelial-Mesenchymal Transition , Ovarian Neoplasms , Protein Serine-Threonine Kinases/physiology , Ribonucleoprotein, U4-U6 Small Nuclear/physiology , Triple Negative Breast Neoplasms , Cell Line, Tumor , Cell Movement , Female , Humans , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
2.
Cancer Immunol Res ; 5(12): 1086-1097, 2017 12.
Article in English | MEDLINE | ID: mdl-29054890

ABSTRACT

Natural killer T (NKT) cells are glycolipid-reactive lymphocytes that promote cancer control. In previous studies, NKT-cell activation improved survival and antitumor immunity in a postsurgical mouse model of metastatic breast cancer. Herein, we investigated whether NKT-cell activation could be combined with chemotherapeutic agents to augment therapeutic outcomes. Gemcitabine and cyclophosphamide analogues enhanced the potential immunogenicity of 4T1 mammary carcinoma cells by increasing the expression of antigen-presenting molecules (MHC-I, MHC-II, and CD1d) and promoting exposure or release of immunogenic cell death markers (calreticulin, HMGB1, and ATP). In 4T1 primary tumor and postsurgical metastasis models, BALB/c mice were treated with cyclophosphamide or gemcitabine. NKT cells were then activated by transfer of dendritic cells loaded with the glycolipid antigen α-galactosylceramide (α-GalCer). Chemotherapeutic treatments did not impact NKT-cell activation but enhanced recruitment into primary tumors. Cyclophosphamide, gemcitabine, or α-GalCer-loaded dendritic cell monotherapies decreased tumor growth in the primary tumor model and reduced metastatic burden and prolonged survival in the metastasis model. Combining chemotherapeutics with NKT-cell activation therapy significantly enhanced survival, with surviving mice exhibiting attenuated tumor growth following a second tumor challenge. The frequency of myeloid-derived suppressor cells was reduced by gemcitabine, cyclophosphamide, or α-GalCer-loaded dendritic cell treatments; cyclophosphamide also reduced the frequency of regulatory T cells. Individual treatments increased immune cell activation, cytokine polarization, and cytotoxic responses, although these readouts were not enhanced further by combining therapies. These findings demonstrate that NKT-cell activation therapy can be combined with gemcitabine or cyclophosphamide to target tumor burden and enhance protection against tumor recurrence. Cancer Immunol Res; 5(12); 1086-97. ©2017 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Immunotherapy , Natural Killer T-Cells/immunology , Animals , Breast Neoplasms/mortality , Breast Neoplasms/therapy , Cell Death/drug effects , Cell Death/immunology , Cell Survival/drug effects , Cell Survival/immunology , Combined Modality Therapy , Disease Models, Animal , Female , Humans , Immunomodulation/drug effects , Lymphocyte Activation/immunology , Mice , Natural Killer T-Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...