Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am Nat ; 189(2): 121-137, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28107052

ABSTRACT

The incorporation of ecological processes into models of trait evolution is important for understanding past drivers of evolutionary change. Species interactions have long been thought to be key drivers of trait evolution. However, models for comparative data that account for interactions between species are lacking. One of the challenges is that such models are intractable and difficult to express analytically. Here we present phylogenetic models of trait evolution that include interspecific competition among chosen species. Competition is modeled as a tendency of sympatric species to evolve toward difference from one another, producing trait overdispersion and high phylogenetic signal. The model predicts elevated trait variance across species and a slowdown in evolutionary rate both across the clade and within each branch. The model also predicts a reduction in correlation between otherwise correlated traits. We use an approximate Bayesian computation approach to estimate model parameters. We find reasonable power to detect competition in sufficiently large (20+ species) trees compared with Brownian trait evolution and with Ornstein-Uhlenbeck and early burst models. We apply the model to examine the evolution of bill morphology of Darwin's finches and find evidence that competition affects the evolution of bill length.


Subject(s)
Biological Evolution , Phylogeny , Animals , Bayes Theorem , Finches , Phenotype , Sympatry
2.
Evolution ; 69(5): 1178-90, 2015 05.
Article in English | MEDLINE | ID: mdl-25824653

ABSTRACT

Models of speciation-with-gene-flow have shown that the reduction in recombination between alternative chromosome arrangements can facilitate the fixation of locally adaptive genes in the face of gene flow and contribute to speciation. However, it has proven frustratingly difficult to show empirically that inversions have reduced gene flow and arose during or shortly after the onset of species divergence rather than represent ancestral polymorphisms. Here, we present an analysis of whole genome data from a pair of cactophilic fruit flies, Drosophila mojavensis and D. arizonae, which are reproductively isolated in the wild and differ by several large inversions on three chromosomes. We found an increase in divergence at rearranged compared to colinear chromosomes. Using the density of divergent sites in short sequence blocks we fit a series of explicit models of species divergence in which gene flow is restricted to an initial period after divergence and may differ between colinear and rearranged parts of the genome. These analyses show that D. mojavensis and D. arizonae have experienced postdivergence gene flow that ceased around 270 KY ago and was significantly reduced in chromosomes with fixed inversions. Moreover, we show that these inversions most likely originated around the time of species divergence which is compatible with theoretical models that posit a role of inversions in speciation with gene flow.


Subject(s)
Chromosome Inversion , Drosophila/genetics , Genetic Speciation , Genome, Insect , Animals , Chromosomes, Insect/genetics , Evolution, Molecular , Gene Flow , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...