Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Mol Endocrinol ; 69(1): 269-283, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35388795

ABSTRACT

We previously identified a novel pathway of testosterone action via the androgen receptor (AR) in bone marrow mesenchymal precursor cells (BM-PCs) to negatively regulate fat mass and improve metabolic function in male mice. This was achieved using our PC-AR Gene Replacement mouse model in which the AR is only expressed in BM-PCs and deleted in all other tissues. We hypothesise that the markedly reduced fat mass and increased insulin sensitivity of PC-AR Gene Replacements will confer protection from diet-induced overweight and obesity. To test this, 6-week-old male PC-AR Gene Replacements and controls (WT, global-AR knockouts (KOs)) were fed a chow or high-caloric diet (HCD) for 8 or 18 weeks. Following 8 weeks (short-term) of HCD, WT and Global-ARKOs had markedly increased subcutaneous white adipose tissue (WAT) and retroperitoneal visceral adipose tissue (VAT) mass compared to chow-fed controls. In contrast, PC-AR Gene Replacements were resistant to WAT and VAT accumulation following short-term HCD feeding accompanied by fewer large adipocytes and upregulation of expression of the metabolic genes Acaca and Pnlpa2. Following long-term HCD feeding for 18 weeks, the PC-AR Gene Replacements were no longer resistant to increased WAT and VAT adiposity, however, maintained their improved whole-body insulin sensitivity with an increased rate of glucose disappearance and increased glucose uptake into subcutaneous WAT. In conclusion, the action of testosterone via the AR in BM-PCs to negatively regulate fat mass and improve metabolism confers resistance from short-term diet-induced weight gain and partial protection from long-term diet-induced obesity in male mice.


Subject(s)
Insulin Resistance , Animals , Bone Marrow/metabolism , Diet, High-Fat/adverse effects , Insulin Resistance/genetics , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/metabolism , Overweight , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Stem Cells/metabolism , Testosterone , Weight Gain
2.
Endocrine ; 73(2): 463-471, 2021 08.
Article in English | MEDLINE | ID: mdl-33864607

ABSTRACT

PURPOSE: The aim of this study was to determine early weight loss-associated changes in subcutaneous abdominal white adipose tissue (WAT) gene expression in obese men with lowered serum testosterone by RNA next-generation sequencing. METHODS: Fourteen men, mean age (IQR) 51.6 years (43.4-54.5), BMI 38.3 kg/m2 (34.6-40.8) and total testosterone 8.4 nmol/L (7.5-9.5) provided subcutaneous WAT samples at baseline and after 2 weeks of a very low energy diet. RESULTS: Body weight loss was similar in participants receiving testosterone (n = 6), -5.27 kg [95% CI -6.17; -4.26], and placebo (n = 8), -4.57 kg [95% CI -6.10; -3.55], p = 0.86. In placebo-treated men, of the 14,410 genes expressed in subcutaneous WAT, four genes, Angiopoietin-like 4, Semaphorin 3 G, Neuropilin 2 and Angiopoietin 4, were upregulated (adjusted false discovery rate P < 0.05). In an exploratory analysis comparing men receiving testosterone and placebo, the most-upregulated gene in the testosterone group (exploratory p < 0.0005) was the neuropeptide y receptor 2. CONCLUSIONS: In obese men, dieting is associated with upregulation of WAT-expressed Angiopoietin-like 4, a secreted protein that regulates lipid metabolism, Semaphorin 3 G, a proposed adipocyte differentiation factor and secreted adipokine, and its receptor Neuropilin 2, as well as Angiopoietin 4, a vascular integrity factor. In an exploratory analysis, testosterone was associated with the upregulation of neuropeptide y receptor 2, a receptor involved in appetite regulation. Further studies are needed to confirm these observations and their potential biological implications. TRIAL REGISTRATION: clinicaltrials.gov, Identifier NCT01616732, Registration date: June 8, 2012.


Subject(s)
Adipose Tissue, White , Testosterone , Abdominal Fat , Child, Preschool , Gene Expression , Humans , Infant , Male , Obesity/drug therapy
3.
J Endocrinol ; 249(1): 31-41, 2021 04.
Article in English | MEDLINE | ID: mdl-33638943

ABSTRACT

The physiological role of calcitonin, and its receptor, the CTR (or Calcr), has long been debated. We previously provided the first evidence for a physiological role of the CTR to limit maternal bone loss during lactation in mice by a direct action on osteocytes to inhibit osteocytic osteolysis. We now extend these findings to show that CTR gene expression is upregulated two- to three-fold in whole bone of control mice at the end of pregnancy (E18) and lactation (P21) compared to virgin controls. This was associated with an increase in osteoclast activity evidenced by increases in osteoclast surface/bone surface and Dcstamp gene expression. To investigate the mechanism by which the CTR inhibits osteocytic osteolysis, in vivo acidification of the osteocyte lacunae during lactation (P14 days) was assessed using a pH indicator dye. A lower pH was observed in the osteocyte lacunae of lactating Global-CTRKOs compared to controls and was associated with an increase in the gene expression of ATPase H+ transporting V0 subunit D2 (Atp6v0d2) in whole bone of Global-CTRKOs at the end of lacation (P21). To determine whether the CTR is required for the replacement of mineral within the lacunae post-lactation, lacunar area was determined 3 weeks post-weaning. Comparison of the largest 20% of lacunae by area did not differ between Global-CTRKOs and controls post-lactation. These results provide evidence for CTR activation to inhibit osteocytic osteolysis during lactation being mediated by regulating the acidity of the lacunae microenvironment, whilst the CTR is dispensable for replacement of bone mineral within lacunae by osteocytes post-lactation.


Subject(s)
Lactation/physiology , Osteocytes/physiology , Receptors, Calcitonin/physiology , Animals , Bone and Bones/physiology , Female , Hydrogen-Ion Concentration , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteolysis/prevention & control , Pregnancy , Receptors, Calcitonin/deficiency , Receptors, Calcitonin/genetics , Up-Regulation/physiology
4.
Nature ; 587(7834): 460-465, 2020 11.
Article in English | MEDLINE | ID: mdl-33149301

ABSTRACT

Atrial fibrillation, the most common cardiac arrhythmia, is an important contributor to mortality and morbidity, and particularly to the risk of stroke in humans1. Atrial-tissue fibrosis is a central pathophysiological feature of atrial fibrillation that also hampers its treatment; the underlying molecular mechanisms are poorly understood and warrant investigation given the inadequacy of present therapies2. Here we show that calcitonin, a hormone product of the thyroid gland involved in bone metabolism3, is also produced by atrial cardiomyocytes in substantial quantities and acts as a paracrine signal that affects neighbouring collagen-producing fibroblasts to control their proliferation and secretion of extracellular matrix proteins. Global disruption of calcitonin receptor signalling in mice causes atrial fibrosis and increases susceptibility to atrial fibrillation. In mice in which liver kinase B1 is knocked down specifically in the atria, atrial-specific knockdown of calcitonin promotes atrial fibrosis and increases and prolongs spontaneous episodes of atrial fibrillation, whereas atrial-specific overexpression of calcitonin prevents both atrial fibrosis and fibrillation. Human patients with persistent atrial fibrillation show sixfold lower levels of myocardial calcitonin compared to control individuals with normal heart rhythm, with loss of calcitonin receptors in the fibroblast membrane. Although transcriptome analysis of human atrial fibroblasts reveals little change after exposure to calcitonin, proteomic analysis shows extensive alterations in extracellular matrix proteins and pathways related to fibrogenesis, infection and immune responses, and transcriptional regulation. Strategies to restore disrupted myocardial calcitonin signalling thus may offer therapeutic avenues for patients with atrial fibrillation.


Subject(s)
Arrhythmias, Cardiac/metabolism , Calcitonin/metabolism , Fibrinogen/biosynthesis , Heart Atria/metabolism , Myocardium/metabolism , Paracrine Communication , Animals , Arrhythmias, Cardiac/pathology , Arrhythmias, Cardiac/physiopathology , Atrial Fibrillation , Collagen Type I/metabolism , Female , Fibroblasts/metabolism , Fibrosis/metabolism , Fibrosis/pathology , Heart Atria/cytology , Heart Atria/pathology , Heart Atria/physiopathology , Humans , Male , Mice , Myocardium/cytology , Myocardium/pathology , Myocytes, Cardiac/metabolism , Receptors, Calcitonin/metabolism
5.
Diabetes ; 69(1): 83-98, 2020 01.
Article in English | MEDLINE | ID: mdl-31624141

ABSTRACT

The sequelae of diabetes include microvascular complications such as diabetic kidney disease (DKD), which involves glucose-mediated renal injury associated with a disruption in mitochondrial metabolic agility, inflammation, and fibrosis. We explored the role of the innate immune complement component C5a, a potent mediator of inflammation, in the pathogenesis of DKD in clinical and experimental diabetes. Marked systemic elevation in C5a activity was demonstrated in patients with diabetes; conventional renoprotective agents did not therapeutically target this elevation. C5a and its receptor (C5aR1) were upregulated early in the disease process and prior to manifest kidney injury in several diverse rodent models of diabetes. Genetic deletion of C5aR1 in mice conferred protection against diabetes-induced renal injury. Transcriptomic profiling of kidney revealed diabetes-induced downregulation of pathways involved in mitochondrial fatty acid metabolism. Interrogation of the lipidomics signature revealed abnormal cardiolipin remodeling in diabetic kidneys, a cardinal sign of disrupted mitochondrial architecture and bioenergetics. In vivo delivery of an orally active inhibitor of C5aR1 (PMX53) reversed the phenotypic changes and normalized the renal mitochondrial fatty acid profile, cardiolipin remodeling, and citric acid cycle intermediates. In vitro exposure of human renal proximal tubular epithelial cells to C5a led to altered mitochondrial respiratory function and reactive oxygen species generation. These experiments provide evidence for a pivotal role of the C5a/C5aR1 axis in propagating renal injury in the development of DKD by disrupting mitochondrial agility, thereby establishing a new immunometabolic signaling pathway in DKD.


Subject(s)
Complement C5a/physiology , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Kidney/pathology , Mitochondria/metabolism , Animals , Cells, Cultured , Complement C5a/genetics , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Energy Metabolism/genetics , Fibrosis/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Rats , Rats, Sprague-Dawley , Receptor, Anaphylatoxin C5a/physiology , Signal Transduction
6.
J Steroid Biochem Mol Biol ; 189: 187-194, 2019 05.
Article in English | MEDLINE | ID: mdl-30853652

ABSTRACT

We have previously shown that expression of the androgen receptor (AR) in neurons within the brain positively regulates hind-limb muscle mass and physical activity in male mice. To further investigate the region of the brain responsible for mediating these effects of testosterone and to determine whether they are only important for muscle mass accrual during development or whether they are also important for the maintenance of muscle mass in the adult, we deleted the AR specifically in the hypothalamus of adult male mice (Hyp-ARKOs). Hyp-ARKO mice were generated by bilateral stereotaxic microinjection of an adeno-associated virus (AAV) expressing GFP and iCre recombinase under the control of the e-synapsin promoter into the hypothalamus of 10-week-old exon 3-AR floxed male mice. AR mRNA was deleted by 45% in the hypothalamus of Hyp-ARKOs at 5 weeks post-AAV-eSyn-iCre injection. This led to an increase in the mass of the androgen-dependent organs, seminal vesicles and kidneys, by 30% (P < 0.01) and 10% (P < 0.05) respectively, and an increase in serum luteinizing hormone (LH) by 2 fold (P < 0.05). Whilst the mean value for serum testosterone was higher in the Hyp-ARKOs, this did not reach statistical significance. Despite a phenotype consistent with increased androgen bioactivity in Hyp-ARKOs, which would be expected to increase muscle mass, the mass of the hind-limb muscles, gastrocnemius (Gast) (P = 0.001), extensor digitorum longus (EDL) (P < 0.001) and soleus (Sol) (P < 0.01) were paradoxically decreased by 12-19% compared to controls. Voluntary physical activity was reduced by 65% (P < 0.05) in Hyp-ARKO male mice and was associated with a reduction in gene expression of Drd1a and Maob (P ≤ 0.05) in the hypothalamus, suggesting involvement of the brain dopaminergic system. These data provide compelling evidence that androgen signalling via the AR in the hypothalamus acts to positively regulate the maintenance of hind-limb muscle mass and voluntary activity in adult male mice, independent of AR signalling in peripheral tissues.


Subject(s)
Hypothalamus/physiology , Muscle, Skeletal/physiology , Receptors, Androgen/metabolism , Animals , Hindlimb/physiology , Male , Mice , Mice, Inbred C57BL , Physical Conditioning, Animal
7.
J Endocrinol ; 237(1): 15-27, 2018 04.
Article in English | MEDLINE | ID: mdl-29386237

ABSTRACT

It is well established that testosterone negatively regulates fat mass in humans and mice; however, the mechanism by which testosterone exerts these effects is poorly understood. We and others have shown that deletion of the androgen receptor (AR) in male mice results in a phenotype that mimics the three key clinical aspects of hypogonadism in human males; increased fat mass and decreased bone and muscle mass. We now show that replacement of the Ar gene specifically in mesenchymal progenitor cells (PCs) residing in the bone marrow of Global-ARKO mice, in the absence of the AR in all other tissues (PC-AR Gene Replacements), completely attenuates their increased fat accumulation. Inguinal subcutaneous white adipose tissue and intra-abdominal retroperitoneal visceral adipose tissue depots in PC-AR Gene Replacement mice were 50-80% lower than wild-type (WT) and 75-90% lower than Global-ARKO controls at 12 weeks of age. The marked decrease in subcutaneous and visceral fat mass in PC-AR Gene Replacements was associated with an increase in the number of small adipocytes and a healthier metabolic profile compared to WT controls, characterised by normal serum leptin and elevated serum adiponectin levels. Euglycaemic/hyperinsulinaemic clamp studies reveal that the PC-AR Gene Replacement mice have improved whole-body insulin sensitivity with higher glucose infusion rates compared to WT mice and increased glucose uptake into subcutaneous and intra-abdominal fat. In conclusion, these data provide the first evidence for an action of androgens via the AR in mesenchymal bone marrow PCs to negatively regulate fat mass and improve metabolic function.


Subject(s)
Adipose Tissue/anatomy & histology , Adipose Tissue/metabolism , Bone Marrow Cells/metabolism , Mesenchymal Stem Cells/metabolism , Receptors, Androgen/physiology , Adipocytes/physiology , Adipogenesis/genetics , Adipose Tissue/pathology , Animals , Bone Marrow/metabolism , Down-Regulation/genetics , Female , Insulin Resistance/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Size/genetics , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
8.
J Steroid Biochem Mol Biol ; 177: 77-82, 2018 03.
Article in English | MEDLINE | ID: mdl-29107736

ABSTRACT

Mature osteoclasts express the vitamin D receptor (VDR) and are able to synthesise and respond to 1,25(OH)2D3 via CYP27B1 enzyme activity. Whether vitamin D signalling within osteoclasts is necessary for the regulation of osteoclastic bone resorption in an in vivo setting is unclear. To determine the requirement for the VDR- and CYP27B1-mediated activity in mature osteoclasts, conditional deletion mouse models were created whereby either Vdr or Cyp27b1 gene was inactivated by breeding either Vdrfl/fl or Cyp27b1fl/fl mice with Cathepsin K-Cre transgenic mice (CstkCre) to generate CtskCre/Vdr-/- and CtskCre/Cyp27b1-/- mice respectively. To account for potential CtskCre-meaited off-target deletion of Vdr, Dmp1Cre were also used determine the effect of Vdr deletion in osteocytes. Furthermore, CtskCre/Vdr-/- mice were ovariectomised (OVX) to assess the role of VDR in osteoclasts under bone-loss conditions and bone marrow precursor cells were cultured under osteoclastogenic conditions to assess osteoclast formation. Six-week-old CtskCre/Vdr-/- female mice demonstrated a 15% decrease in femoral BV/TV (p<0.05). In contrast, BV/TV remained unchanged in CtskCre/Cyp27b1-/- mice as well as in Dmp1Cre/VDR-/- mice. When CtskCre/Vdr-/- mice were subjected to OVX, the bone loss that occurred in CtskCre/Vdr-/- was predominantly due to a diminished volume of thinner trabeculae when compared to control levels. These changes in bone volume in CtskCre/Vdr-/- mice occurred without an observable histological change in osteoclast numbers or size. However, while cultured bone marrow-derived osteoclasts from CtskCre/Vdr-/- mice were marginally increased when compared to VDRfl/fl mice, elevated expression of genes such as Cathepsin K, Nfatc1 and VATPase was observed. Collectively, these data indicate that the absence of VDR in mature osteoclasts causes exacerbated bone loss in young mice and during OVX which is associated with enhanced osteoclastic activity and without increased osteoclastogenesis.


Subject(s)
Bone Resorption/physiopathology , Osteoclasts/physiology , Receptors, Calcitriol/physiology , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/physiology , Animals , Bone Marrow Cells/physiology , Cells, Cultured , Female , Femur/diagnostic imaging , Femur/physiology , Mice, Knockout , Ovariectomy
9.
Endocrinology ; 158(10): 3684-3695, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28977603

ABSTRACT

Although it is well established that exogenous androgens have anabolic effects on skeletal muscle mass in humans and mice, data from muscle-specific androgen receptor (AR) knockout (ARKO) mice indicate that myocytic expression of the AR is dispensable for hind-limb muscle mass accrual in males. To identify possible indirect actions of androgens via the AR in neurons to regulate muscle, we generated neuron-ARKO mice in which the dominant DNA binding-dependent actions of the AR are deleted in neurons of the cortex, forebrain, hypothalamus, and olfactory bulb. Serum testosterone and luteinizing hormone levels were elevated twofold in neuron-ARKO males compared with wild-type littermates due to disruption of negative feedback to the hypothalamic-pituitary-gonadal axis. Despite this increase in serum testosterone levels, which was expected to increase muscle mass, the mass of the mixed-fiber gastrocnemius (Gast) and the fast-twitch fiber extensor digitorum longus hind-limb muscles was decreased by 10% in neuron-ARKOs at 12 weeks of age, whereas muscle strength and fatigue of the Gast were unaffected. The mass of the soleus muscle, however, which consists of a high proportion of slow-twitch fibers, was unaffected in neuron-ARKOs, demonstrating a stimulatory action of androgens via the AR in neurons to increase the mass of fast-twitch hind-limb muscles. Furthermore, neuron-ARKOs displayed reductions in voluntary and involuntary physical activity by up to 60%. These data provide evidence for a role of androgens via the AR in neurons to positively regulate fast-twitch hind-limb muscle mass and physical activity in male mice.


Subject(s)
Brain/metabolism , Motor Activity/genetics , Muscle, Skeletal/anatomy & histology , Neurons/metabolism , Physical Conditioning, Animal , Receptors, Androgen/genetics , Androgens , Animals , Blotting, Western , Feedback, Physiological , Genotype , Luteinizing Hormone/metabolism , Male , Mice , Mice, Knockout , Muscle Fatigue/genetics , Muscle Fibers, Skeletal , Muscle Strength/genetics , Organ Size/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Testosterone/metabolism
10.
J Steroid Biochem Mol Biol ; 174: 56-64, 2017 11.
Article in English | MEDLINE | ID: mdl-28756295

ABSTRACT

Androgen deprivation therapy (ADT) decreases muscle mass and function but no human studies have investigated the underlying genetic or cellular effects. We tested the hypothesis that ADT will lead to changes in skeletal muscle gene expression, which may explain the adverse muscle phenotype seen clinically. We conducted a prospective cohort study of 9 men with localised prostate cancer who underwent a vastus lateralis biopsy before and after 4 weeks of ADT. Next-generation RNA sequencing was performed and genes differentially expressed following ADT underwent gene ontology mining using Ingenuity Pathway Analysis. Differential expression of genes of interest was confirmed by quantitative PCR (Q-PCR) on gastrocnemius muscle of orchidectomised mice and sham controls (n=11/group). We found that in men, circulating total testosterone decreased from 16.5±4.3nmol/L at baseline to 0.4±0.15nmol/L post-ADT (p<0.001). RNA sequencing identified 19 differentially expressed genes post-ADT (all p<0.05 after adjusting for multiple testing). Gene ontology mining identified 8 genes to be of particular interest due to known roles in androgen-mediated signalling; ABCG1, ACTC1, ANKRD1, DMPK, THY1, DCLK1, CST3 were upregulated and SLC38A3 was downregulated post-ADT. Q-PCR in mouse gastrocnemius muscle confirmed that only one gene, Actc1 was concordantly upregulated (p<0.01) in orchidectomised mice compared with controls. In conclusion, given that ACTC1 upregulation is associated with improved muscle function in certain myopathies, we hypothesise that upregulation of ACTC1 may represent a compensatory response to ADT-induced muscle loss. Further studies will be required to evaluate the role and function of ACTC1.


Subject(s)
Actins/genetics , Androgen Antagonists/pharmacology , Antineoplastic Agents, Hormonal/pharmacology , Muscle, Skeletal/metabolism , Prostatic Neoplasms/genetics , Aged , Androgen Antagonists/therapeutic use , Animals , Antineoplastic Agents, Hormonal/therapeutic use , Gene Expression/drug effects , Humans , Male , Mice, Inbred C57BL , Middle Aged , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/drug effects , Orchiectomy , Prostatic Neoplasms/blood , Prostatic Neoplasms/drug therapy , Testosterone/blood , Up-Regulation
11.
Endocrinology ; 156(9): 3203-14, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26135836

ABSTRACT

During lactation, the large transfer of calcium from the mother to the milk is primarily sourced from the maternal skeleton. To determine whether the calcitonin receptor (CTR) plays a physiological role to protect the skeleton from excessive resorption during lactation, we assessed the maternal skeleton of global CTR knockout (CTRKO) and littermate control mice at the end of lactation (postnatal day 21). Micro-computed tomography analyses showed no effect on trabecular or cortical bone in the distal femur and L1 vertebra of maternal global CTR deletion at the end of lactation in global CTRKO mice compared with that in control mice. Bone resorption, as assessed by osteoclast number and activity at the end of lactation, was unaffected by maternal CTR deletion. Cathepsin K, carbonic anhydrase 2, matrix metalloproteinase 13, and receptor activator of nuclear factor-κB ligand mRNA levels, however, were markedly elevated by 3- to 6.5-fold in whole bone of lactating global CTRKO females. Because these genes have been shown to be up-regulated in osteocytes during lactation when osteocytes resorb their surrounding bone matrix, together with their reported expression of the CTR, we determined the osteocyte lacunar area in cortical bone. After lactation, the top 20% of osteocyte lacunar area in global CTRKO mice was 10% larger than the top 20% in control mice. These data are consistent with an increased osteocytic osteolysis in global CTRKO mice during lactation, which is further supported by the increased serum calcium observed in global CTRKO mice after lactation. These results provide evidence for a physiological role for the CTR to protect the maternal skeleton during lactation by a direct action on osteocytes to inhibit osteolysis.


Subject(s)
Lactation/metabolism , Osteocytes/physiology , Osteolysis , Receptors, Calcitonin/metabolism , Animals , Bone Development , Calcium/blood , Female , Mice, Knockout , Pregnancy
12.
J Bone Miner Res ; 30(5): 809-23, 2015 May.
Article in English | MEDLINE | ID: mdl-25407961

ABSTRACT

Androgen action via the androgen receptor (AR) is essential for normal skeletal growth and bone maintenance post-puberty in males; however, the molecular and cellular mechanisms by which androgens exert their actions in osteoblasts remains relatively unexplored in vivo. To identify autonomous AR actions in osteoblasts independent of AR signaling in other tissues, we compared the extent to which the bone phenotype of the Global-ARKO mouse was restored by replacing the AR in osteoblasts commencing at either the (1) proliferative or (2) mineralization stage of their maturation. In trabecular bone, androgens stimulated trabecular bone accrual during growth via the AR in proliferating osteoblasts and maintained trabecular bone post-puberty via the AR in mineralizing osteoblasts, with its predominant action being to inhibit bone resorption by decreasing the ratio of receptor activator of NF-κB ligand (RANKL) to osteoprotegerin (OPG) gene expression. During growth, replacement of the AR in proliferating but not mineralizing osteoblasts of Global-ARKOs was able to partially restore periosteal circumference, supporting the concept that androgen action in cortical bone to increase bone size during growth is mediated via the AR in proliferating osteoblasts. This study provides further significant insight into the mechanism of androgen action via the AR in osteoblasts, demonstrating that it is dependent on the stage of osteoblast maturation.


Subject(s)
Osteoblasts/metabolism , Receptors, Androgen/metabolism , Sexual Maturation , Animals , Body Weight , Femur/anatomy & histology , Femur/diagnostic imaging , Femur/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , RANK Ligand/genetics , RANK Ligand/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Androgen/genetics , Testosterone/blood , Transgenes , X-Ray Microtomography
13.
Endocr Res ; 39(3): 130-5, 2014.
Article in English | MEDLINE | ID: mdl-24467187

ABSTRACT

Androgens (testosterone and dihydrotestosterone) acting via the androgen receptor (AR) are required for male sexual differentiation, and also regulate the development of many other tissues including muscle, fat and bone. We previously generated an AR(lox) mouse line with exon 3 of the AR gene targeted by loxP sites. The deletion of exon 3 is in-frame, so only the DNA binding-dependent actions of the AR are deleted, but non-DNA binding-dependent actions are retained. This line also contained an antibiotic resistance selection cassette, neomycin (neo) in intron 3, which was also flanked by loxP sites. Hemizygous AR(lox) male mice demonstrated a phenotype of hyperandrogenization, with increased mass of androgen-dependent tissues. We hypothesized that this hyperandrogenization was likely to be due to the presence of the neo cassette. In this study, we have generated an AR(lox) neo-negative mouse line, using the EIIa-cre deleter mouse line to remove the neo cassette. Hemizygous AR(lox) neo-negative male mice have a normal phenotype, with normal body mass and normal mass of androgen-dependent tissues including the testis, seminal vesicles, kidney, spleen, heart and retroperitoneal fat. This neo-negative exon 3-targeted mouse line is the only floxed AR mouse line available to study the DNA binding-dependent actions of the AR in a tissue-specific manner, and is suitable for investigation in all tissues. This study demonstrates the importance of removing the selection cassette, which can potentially alter the phenotype of floxed mouse lines even in the absence of detectable effects on target gene expression.


Subject(s)
Gene Knockout Techniques/methods , Receptors, Androgen/genetics , Animals , DNA-Binding Proteins/metabolism , Female , Gene Deletion , Male , Mice, Inbred C57BL , Mice, Transgenic , Neomycin/metabolism , Phenotype , Receptors, Androgen/metabolism
14.
J Mol Endocrinol ; 49(1): 1-10, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22525354

ABSTRACT

Androgens play a key role in skeletal growth and maintenance in males and can mediate their actions, at least in part, via the androgen receptor (AR) in osteoblasts. To investigate the mechanisms by which androgens exert their effects via the AR in mineralizing osteoblasts and osteocytes, we identified gene targets/pathways regulated by the AR using targeted gene expression and microarray approaches on bone isolated from mice in which the AR is specifically deleted in mineralizing osteoblasts and osteocytes (mOBL-ARKOs). Gene ontology mining indicated a number of biological processes to be affected in the bones of mOBL-ARKOs including skeletal and muscular system development and carbohydrate metabolism. All genes identified to have altered expression in the bones of mOBL-ARKOs were confirmed by Q-PCR for their androgen responsiveness in an androgen deprivation and replacement mouse model. The osteoblast genes Col1a1 and Bglap and the osteoclast genes Ctsk and RANKL (Tnfs11) were upregulated in the bones of mOBL-ARKOs, consistent with the increased matrix synthesis, mineralization, and bone resorption observed previously in these mice. Of significant interest, we identified genes involved in carbohydrate metabolism (adiponectin and Dpp4) and in growth and development (GH, Tgfb (Tgfb2), Wnt4) as potential targets of androgen action via the AR in mineralizing osteoblasts.


Subject(s)
Gene Deletion , Osteoblasts/metabolism , Osteocytes/metabolism , Receptors, Androgen/genetics , Adiponectin/blood , Androgens/metabolism , Animals , Blood Glucose , Calcification, Physiologic , Gene Expression Profiling , Gene Targeting , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microarray Analysis , Receptors, Androgen/metabolism , Signal Transduction
15.
Mol Cell Endocrinol ; 348(1): 189-97, 2012 Jan 02.
Article in English | MEDLINE | ID: mdl-21872641

ABSTRACT

We tested the hypothesis that androgens have physiological actions via non-DNA binding-dependent androgen receptor (AR) signaling pathways in males, using our genetically modified mice that express a mutant AR with deletion of the 2nd zinc finger of the DNA binding domain (AR(ΔZF2)) that cannot bind DNA. In cultured genital skin fibroblasts, the mutant AR(ΔZF2) has normal ligand binding ability, phosphorylates ERK-1/2 in response to 1 min DHT treatment (blocked by the AR antagonist bicalutamide), but has reduced androgen-dependent nuclear localization compared to wildtype (WT). AR(ΔZF2) males have normal baseline ERK-1/2 phosphorylation, with a 1.5-fold increase in Akt phosphorylation in AR(ΔZF2) muscle vs WT. To identify physiological actions of non-DNA binding-dependent AR signaling, AR(ΔZF2) males were treated for 6 weeks with dihydrotestosterone (DHT). Cortical bone growth was suppressed by DHT in AR(ΔZF2) mice (6% decrease in periosteal and 7% decrease in medullary circumference vs untreated AR(ΔZF2) males). In conclusion, these data suggest that non-DNA binding dependent AR actions suppress cortical bone growth, which may provide a mechanism to fine-tune the response to androgens in bone.


Subject(s)
Androgens/physiology , DNA/metabolism , Gene Expression Regulation , Receptors, Androgen/metabolism , Androgens/pharmacology , Animals , Cell Nucleus/metabolism , Dihydrotestosterone/pharmacology , Femur/anatomy & histology , Femur/drug effects , Femur/metabolism , Gene Expression , Kidney/metabolism , MAP Kinase Signaling System , Male , Mice , Mice, Inbred C57BL , Models, Biological , Muscle, Skeletal/metabolism , Organ Specificity , Protein Binding , Protein Transport , Receptors, Androgen/genetics , Response Elements , Sequence Deletion , Subcutaneous Fat/metabolism , Testis/metabolism
16.
Transgenic Res ; 21(4): 885-93, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22160436

ABSTRACT

Conditional gene inactivation using the Cre/loxP system has lead to significant advances in our understanding of the function of genes in a wide range of disciplines. It is becoming increasingly apparent in the literature, that Cre transgenic mice may themselves have a phenotype. In the following study we describe the bone phenotype of a commonly used Cre transgenic mouse line to study osteoblasts, the Osx-GFP::Cre (Osx-Cre) mice. Cortical and trabecular bone parameters were determined in the femurs of Osx-Cre mice at 6 and 12 weeks of age by microtomography (µCT). At 6 weeks of age, Osx-Cre mice had reduced body weight by 22% (P < 0.0001) and delayed cortical bone expansion and accrual, characterized by decreases in periosteal circumference by 7% (P < 0.05) and cortical thickness by 11% (P < 0.01), compared to wild type controls. Importantly, the cortical bone phenotype of the skeletally immature Osx-Cre mice at 6 weeks of age could be accounted for by their low body weight. The delayed weight gain and cortical growth of Osx-Cre mice was overcome by 12 weeks of age, with no differences observed between Osx-Cre and wild type controls. In conclusion, Osx-Cre expressing mice display a delayed growth phenotype in the absence of doxycycline treatment, evidenced by decreased cortical bone expansion and accrual at 6 weeks of age, as an indirect result of decreased body weight. While this delay in growth is overcome by adulthood at 12 weeks of age, caution together with appropriate data analysis must be considered when assessing the experimental data from skeletally immature Cre/loxP knockout mice generated using the Osx-Cre mouse line to avoid misinterpretation.


Subject(s)
Bone Development , Integrases , Mice, Transgenic , Transcription Factors , Animals , Body Weight/genetics , Body Weight/physiology , Bone Development/genetics , Bone Development/physiology , Bone and Bones/diagnostic imaging , Bone and Bones/physiology , Femur/diagnostic imaging , Integrases/genetics , Integrases/metabolism , Mice , Mice, Transgenic/genetics , Mice, Transgenic/physiology , Phenotype , Radiography , Sp7 Transcription Factor , Transcription Factors/genetics , Transcription Factors/metabolism
17.
Am J Physiol Endocrinol Metab ; 301(5): E767-78, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21712531

ABSTRACT

In men, as testosterone levels decrease, fat mass increases and muscle mass decreases. Increased fat mass in men, in particular central obesity, is a major risk factor for type 2 diabetes, cardiovascular disease, and all-cause mortality. Testosterone treatment has been shown to decrease fat mass and increase fat-free mass. We hypothesize that androgens act directly via the DNA binding-dependent actions of the androgen receptor (AR) to regulate genes controlling fat mass and metabolism. The aim of this study was to determine the effect of a global DNA binding-dependent (DBD) AR knockout (DBD-ARKO) on the metabolic phenotype in male mice by measuring body mass, fat mass, food intake, voluntary physical activity, resting energy expenditure, substrate oxidation rates, serum glucose, insulin, lipid, and hormone levels, and metabolic gene expression levels and second messenger protein levels. DBD-ARKO males have increased adiposity despite a decreased total body mass compared with wild-type (WT) males. DBD-ARKO males showed reduced voluntary activity, decreased food intake, increased serum leptin and adiponectin levels, an altered lipid metabolism gene profile, and increased phosphorylated CREB levels compared with WT males. This study demonstrates that androgens acting via the DNA binding-dependent actions of the AR regulate fat mass and metabolism in males and that the increased adiposity in DBD-ARKO male mice is associated with decreased voluntary activity, hyperleptinemia and hyperadiponectinemia and not with insulin resistance, increased food intake, or decreased resting energy expenditure.


Subject(s)
Adiposity/genetics , Insulin Resistance/genetics , Motivation/genetics , Motor Activity/genetics , Receptors, Androgen/genetics , Adiponectin/blood , Animals , DNA/metabolism , DNA-Binding Proteins/metabolism , Down-Regulation , Eating/genetics , Eating/physiology , Insulin Resistance/physiology , Leptin/blood , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Motivation/physiology , Protein Interaction Domains and Motifs/genetics , Receptors, Androgen/chemistry , Receptors, Androgen/metabolism , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...