Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Clin Cancer Res ; 20(12): 3222-32, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24928945

ABSTRACT

PURPOSE: Estrogen receptor-α (ERα)-targeted therapies including tamoxifen (TAM) or Faslodex (ICI) are used to treat ER(+) breast cancers. Up to 50% of tumors will acquire resistance to these interventions. Autophagy has been implicated as a major driver of antiestrogen resistance. We have explored the ability of hydroxychloroquine (HCQ), which inhibits autophagy, to affect antiestrogen responsiveness. EXPERIMENTAL DESIGN: TAM-resistant MCF7-RR and ICI-resistant/TAM cross-resistant LCC9 ER(+) breast cancer cells were injected into mammary fat pads of female athymic mice and treated with TAM and/or ICI in combination with oral low-dose HCQ. RESULTS: We show that HCQ can increase antiestrogen responsiveness in MCF7-RR and LCC9 cells and tumors, likely through the inhibition of autophagy. However, the combination of ICI+HCQ was less effective than HCQ alone in vivo, unlike the TAM+HCQ combination. Antiestrogen treatment stimulated angiogenesis in tumors but did not prevent HCQ effectiveness. The lower efficacy of ICI+HCQ was associated with ICI effects on cell-mediated immunity within the tumor microenvironment. The mouse chemokine KC (CXCL1) and IFNγ were differentially regulated by both TAM and ICI treatments, suggesting a possible effect on macrophage development/activity. Consistent with these observations, TAM+HCQ treatment increased tumor CD68(+) cells infiltration, whereas ICI and ICI+HCQ reduced peripheral tumor macrophage content. Moreover, macrophage elimination of breast cancer target cells in vitro was reduced following exposure to ICI. CONCLUSION: HCQ restores antiestrogen sensitivity to resistant tumors. Moreover, the beneficial combination of TAM+HCQ suggests a positive outcome for ongoing neoadjuvant clinical trials using this combination for the treatment of ER(+) ductal carcinoma in situ lesions.


Subject(s)
Autophagy/drug effects , Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm/drug effects , Estradiol/analogs & derivatives , Estrogen Receptor Modulators/pharmacology , Hydroxychloroquine/pharmacology , Receptors, Estrogen/metabolism , Tamoxifen/pharmacology , Animals , Apoptosis/drug effects , Blotting, Western , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Estradiol/pharmacology , Estrogen Antagonists/pharmacology , Female , Fulvestrant , Humans , Immunoenzyme Techniques , Macrophages/drug effects , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Nude , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
2.
Cell Biosci ; 4(1): 16, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24669863

ABSTRACT

BACKGROUND: Autophagy (macroautophagy), a cellular process of "self-eating", segregates damaged/aged organelles into vesicles, fuses with lysosomes, and enables recycling of the digested materials. The precise origin(s) of the autophagosome membrane is unclear and remains a critical but unanswered question. Endoplasmic reticulum, mitochondria, Golgi complex, and the plasma membrane have been proposed as the source of autophagosomal membranes. FINDINGS: Using electron microscopy, immunogold labeling techniques, confocal microscopy, and flow cytometry we show that mitochondria can directly donate their membrane material to form autophagosomes. We expand upon earlier studies to show that mitochondria donate their membranes to form autophagosomes during basal and drug-induced autophagy. Moreover, electron microscopy and immunogold labeling studies show the first physical evidence of mitochondria forming continuous structures with LC3-labeled autophagosomes. The mitochondria forming these structures also stain positive for parkin, indicating that these mitochondrial-formed autophagosomes represent a novel mechanism of parkin-associated mitophagy. CONCLUSIONS: With the on-going debate regarding autophagosomal membrane origin, this report demonstrates that mitochondria can donate membrane materials to form autophagosomes. These structures may also represent a novel form of mitophagy where the mitochondria contribute to the formation of autophagosomes. This novel form of parkin-associated mitophagy may be a more efficient bio-energetic process compared with de novo biosynthesis of a new membrane, particularly if the membrane is obtained, at least partly, from the organelle being targeted for later degradation in the mature autolysosome.

SELECTION OF CITATIONS
SEARCH DETAIL
...