Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(13): 9261-9271, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38517949

ABSTRACT

Despite considerable recent advances already made in developing chemically circular polymers (CPs), the current framework predominantly focuses on CPs with linear-chain structures of different monomer types. As polymer properties are determined by not only composition but also topology, manipulating the topology of the single-monomer-based CP systems from linear-chain structures to architecturally complex polymers could potentially modulate the resulting polymer properties without changing the chemical composition, thereby advancing the concept of monomaterial product design. To that end, here, we introduce a chemically circular hyperbranched polyester (HBPE), synthesized by a mixed chain-growth and step-growth polymerization of a rationally designed bicyclic lactone with a pendent hydroxyl group (BiLOH). This HBPE exhibits full chemical recyclability despite its architectural complexity, showing quantitative selectivity for regeneration of BiLOH, via a unique cascade depolymerization mechanism. Moreover, distinct differences in materials properties and performance arising from topological variations between HBPE, hb-PBiLOH, and its linear analogue, l-PBiLOH, have been revealed where generally the branched structure led to more favorable interchain interactions, and topology-amplified optical activity has also been observed for chiral (1S, 4S, 5S)-hb-PBiLOH. More intriguingly, depolymerization of l-PBiLOH proceeds through an unexpected, initial topological transformation to the HBPE polymer, followed by the faster cascade depolymerization pathway adopted by hb-PBiLOH. Overall, these results demonstrate that CP design can go beyond typical linear polymers, and rationally redesigned, architecturally complex polymers for their unique properties may synergistically impart advantages in topology-augmented depolymerization acceleration and selectivity for exclusive monomer regeneration.

2.
J Am Chem Soc ; 146(7): 4930-4941, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38346332

ABSTRACT

Cyclic block copolymers (cBCP) are fundamentally intriguing materials, but their synthetic challenges that demand precision in controlling both the monomer sequence and polymer topology limit access to AB and ABC block architectures. Here, we show that cyclic ABAB tetra-BCPs (cABAB) and their linear counterpart (lABAB) can be readily obtained at a speed and scale from one-pot (meth)acrylic monomer mixtures, through coupling the Lewis pair polymerization's unique compounded-sequence control with its precision in topology control. This approach achieves fast (<15 min) and quantitative (>99%) conversion to tetra-BCPs of predesignated linear or cyclic topology at scale (40 g) in a one-pot procedure, precluding the needs for repeated chain extensions, stoichiometric addition steps, dilute conditions, and postsynthetic modifications, and/or postsynthetic ring-closure steps. The resulting lABAB and cABAB have essentially identical molecular weights (Mn = 165-168 kg mol-1) and block degrees/symmetry, allowing for direct behavioral comparisons in solution (hydrodynamic volume, intrinsic viscosity, elution time, and refractive indices), bulk (thermal transitions), and film (thermomechanical and rheometric properties and X-ray scattering patterns) states. To further the morphological characterizations, allylic side-chain functionality is exploited via the thiol-ene click chemistry to install crystalline octadecane side chains and promote phase separation between the A and B blocks, allowing visualization of microdomain formation.

3.
Nat Commun ; 15(1): 1217, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336849

ABSTRACT

Successes in biocatalytic polyester recycling have raised the possibility of deconstructing alternative polymers enzymatically, with polyamide (PA) being a logical target due to the array of amide-cleaving enzymes present in nature. Here, we screen 40 potential natural and engineered nylon-hydrolyzing enzymes (nylonases), using mass spectrometry to quantify eight compounds resulting from enzymatic nylon-6 (PA6) hydrolysis. Comparative time-course reactions incubated at 40-70 °C showcase enzyme-dependent variations in product distributions and extent of PA6 film depolymerization, with significant nylon deconstruction activity appearing rare. The most active nylonase, a NylCK variant we rationally thermostabilized (an N-terminal nucleophile (Ntn) hydrolase, NylCK-TS, Tm = 87.4 °C, 16.4 °C higher than the wild-type), hydrolyzes 0.67 wt% of a PA6 film. Reactions fail to restart after fresh enzyme addition, indicating that substrate-based limitations, such as restricted enzyme access to hydrolysable bonds, prohibit more extensive deconstruction. Overall, this study expands our understanding of nylonase activity distribution, indicates that Ntn hydrolases may have the greatest potential for further development, and identifies key targets for progressing PA6 enzymatic depolymerization, including improving enzyme activity, product selectivity, and enhancing polymer accessibility.


Subject(s)
Caprolactam/analogs & derivatives , Nylons , Polymers , Hydrolysis , Polymers/chemistry , Polyesters
4.
Sci Adv ; 9(47): eadi1735, 2023 11 24.
Article in English | MEDLINE | ID: mdl-37992173

ABSTRACT

Cross-linked elastomers are stretchable materials that typically are not recyclable or biodegradable. Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) are soft and ductile, making these bio-based polymers good candidates for biodegradable elastomers. Elasticity is commonly imparted by a cross-linked network structure, and covalent adaptable networks have emerged as a solution to prepare recyclable thermosets via triggered rearrangement of dynamic covalent bonds. Here, we develop biodegradable and recyclable elastomers by chemically installing the covalent adaptable network within biologically produced mcl-PHAs. Specifically, an engineered strain of Pseudomonas putida was used to produce mcl-PHAs containing pendent terminal alkenes as chemical handles for postfunctionalization. Thiol-ene chemistry was used to incorporate boronic ester (BE) cross-links, resulting in PHA-based vitrimers. mcl-PHAs cross-linked with BE at low density (<6 mole %) affords a soft, elastomeric material that demonstrates thermal reprocessability, biodegradability, and denetworking at end of life. The mechanical properties show potential for applications including adhesives and soft, biodegradable robotics and electronics.


Subject(s)
Polyhydroxyalkanoates , Pseudomonas putida , Polyhydroxyalkanoates/chemistry , Pseudomonas putida/genetics , Elasticity , Elastomers
5.
Nature ; 616(7958): 731-739, 2023 04.
Article in English | MEDLINE | ID: mdl-37100943

ABSTRACT

The global plastics problem is a trifecta, greatly affecting environment, energy and climate1-4. Many innovative closed/open-loop plastics recycling or upcycling strategies have been proposed or developed5-16, addressing various aspects of the issues underpinning the achievement of a circular economy17-19. In this context, reusing mixed-plastics waste presents a particular challenge with no current effective closed-loop solution20. This is because such mixed plastics, especially polar/apolar polymer mixtures, are typically incompatible and phase separate, leading to materials with substantially inferior properties. To address this key barrier, here we introduce a new compatibilization strategy that installs dynamic crosslinkers into several classes of binary, ternary and postconsumer immiscible polymer mixtures in situ. Our combined experimental and modelling studies show that specifically designed classes of dynamic crosslinker can reactivate mixed-plastics chains, represented here by apolar polyolefins and polar polyesters, by compatibilizing them via dynamic formation of graft multiblock copolymers. The resulting in-situ-generated dynamic thermosets exhibit intrinsic reprocessability and enhanced tensile strength and creep resistance relative to virgin plastics. This approach avoids the need for de/reconstruction and thus potentially provides an alternative, facile route towards the recovery of the endowed energy and materials value of individual plastics.

6.
Angew Chem Int Ed Engl ; 62(26): e202303791, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37102633

ABSTRACT

Chemically recyclable, circular polymers continue to attract increasing attention, but rendering both catalysts for depolymerization and high-performance polymers recyclable is a more sustainable yet challenging goal. Here we introduce a dual catalyst/polymer recycling system in that recyclable inorganic phosphomolybdic acid catalyzes selective depolymerization of high-ceiling-temperature biodegradable poly(δ-valerolactone) in bulk phase, which, upon reaching suitable molecular weight, exhibits outstanding mechanical performance with a high tensile strength of ≈66.6 MPa, fracture strain of ≈904 %, and toughness of ≈308 MJ m-3 , and thus markedly outperforms commodity polyolefins, recovering its monomer in pure state and quantitative yield at only 100 °C. In sharp contrast, the uncatalyzed depolymerization not only requires a high temperature of >310 °C but is also low yielding and non-selective. Importantly, the recovered monomer can be repolymerized as is to reproduce the same polymer, thereby closing the circular loop, and the recycled catalyst can be reused repeatedly for depolymerization runs without loss of its catalytic activity and efficiency.


Subject(s)
Polyesters , Polymers , Polyesters/chemistry , Polymers/chemistry , Polyenes , Catalysis
7.
Nat Chem ; 15(2): 278-285, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36344817

ABSTRACT

Geminal disubstitution of cyclic monomers is an effective strategy to enhance the chemical recyclability of their polymers, but it is utilized for that purpose alone and often at the expense of performance properties. Here we present synergistic use of gem-α,α-disubstitution of available at-scale, bio-based δ-valerolactones to yield gem-dialkyl-substituted valerolactones ([Formula: see text]), which generate polymers that solve not only the poor chemical recyclability but also the low melting temperature and mechanical performance of the parent poly(δ-valerolactone); the gem-disubstituted polyesters ([Formula: see text]) therefore not only exhibit complete chemical recyclability but also thermal, mechanical and transport properties that rival or exceed those of polyethylene. Through a fundamental structure-property study that reveals intriguing impacts of the alkyl chain length on materials performance of [Formula: see text], this work establishes a simple circular, high-performance polyester platform based on [Formula: see text] and highlights the importance of synergistic utilization of gem-disubstitution for enhancing both chemical recyclability and materials performance of sustainable polyesters.

8.
J Am Chem Soc ; 144(51): 23572-23584, 2022 12 28.
Article in English | MEDLINE | ID: mdl-36521036

ABSTRACT

The design of facile synthetic routes to well-defined block copolymers (BCPs) from direct polymerization of one-pot comonomer mixtures, rather than traditional sequential additions, is both fundamentally and technologically important. Such synthetic methodologies often leverage relative monomer reactivity toward propagating species exclusively and therefore are rather limited in monomer scope and control over copolymer structure. The recently developed compounded sequence control (CSC) by Lewis pair polymerization (LPP) utilizes synergistically both thermodynamic (Keq) and kinetic (kp) differentiation to precisely control BCP sequences and suppress tapering and misincorporation errors. Here, we present an in-depth study of CSC by LPP, focusing on the complex interplay of the fundamental Keq and kp parameters, which enable the unique ability of CSC-LPP to precisely control comonomer sequences across a variety of polar vinyl monomer classes. Individual Lewis acid equilibrium and polymerization rate parameters of a range of commercially relevant monomers were experimentally quantified, computationally validated, and rationalized. These values allowed for the judicious design of copolymerizations which probed multiple hypotheses regarding the constructive vs conflicting nature of the relationship between Keq and kp biases, which arise during CSC-LPP of comonomer mixtures. These relationships were thoroughly explored and directly correlated with resultant copolymer microstructures. Several examples of higher-order BCPs are presented, further demonstrating the potential for materials innovation offered by this methodology.


Subject(s)
Lewis Acids , Polymers , Polymerization , Polymers/chemistry , Thermodynamics
9.
Angew Chem Int Ed Engl ; 61(15): e202116303, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35132730

ABSTRACT

In typical cyclic polymer synthesis via ring-closure, chain growth and cyclization events are competing with each other, thus affording cyclic polymers with uncontrolled molecular weight or ring size and high dispersity. Here we uncover a mechanism by which Lewis pair polymerization (LPP) operates on polar vinyl monomers that allows the control of where and when cyclization takes place, thereby achieving spatial and temporal control to afford precision cyclic vinyl polymers or block copolymers with predictable molecular weight and low dispersity (≈1.03). A combined experimental and theoretical study demonstrates that cyclization occurs only after all monomers have been consumed (when) via conjugate addition of the propagating chain end to the specific site of the initiating chain end (where), allowing the cyclic polymer formation steps to be regulated and executed with precision in space and time.

10.
J Am Chem Soc ; 144(5): 2264-2275, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35084829

ABSTRACT

Two well-known low-ceiling-temperature (LCT) monomers, γ-butyrolactone (γ-BL) toward ring-opening polymerization (ROP) to polyester and cyclohexene toward ring-opening metathesis polymerization (ROMP) to poly(cyclic olefin), are notoriously "nonpolymerizable". Here we present a strategy to render not only polymerizability of both the γ-BL and cyclohexene sites, orthogonally, but also complete and orthogonal depolymerization, through creating an LCT/LCT hybrid, bicyclic lactone/olefin (BiL=). This hybrid monomer undergoes orthogonal polymerization between ROP and ROMP, depending on the catalyst employed, affording two totally different classes of polymeric materials from this single monomer: polyester P(BiL=)ROP via ROP and functionalized poly(cyclic olefin) P(BiL=)ROMP via ROMP. Intriguingly, both P(BiL=)ROP and P(BiL=)ROMP are thermally robust but chemically recyclable under mild conditions (25-40 °C), in the presence of a catalyst, to recover cleanly the same monomer via chain unzipping and scission, respectively. In the ROP, topological and stereochemical controls have been achieved and the structures characterized. Furthermore, the intact functional group during the orthogonal polymerization (i.e., the double bond in ROP and the lactone in ROMP) is utilized for postfunctionalization for tuning materials' thermal and mechanical performances. The impressive depolymerization orthogonality further endows selective depolymerization of both the ROP/ROMP copolymer and the physical blend composites into the same starting monomer.

11.
J Am Chem Soc ; 143(9): 3318-3322, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33641330

ABSTRACT

Precision synthesis of cyclic polymers with predictable molecular weight and low dispersity is a challenging task, particularly concerning cyclic polar vinyl polymers through a rapid chain-growth mechanism and without high dilution. Harder yet is the precision synthesis of cyclic block copolymers (cBCPs), ideally from comonomer mixtures. Here we report that Lewis pair polymerization (LPP) capable of thermodynamically and kinetically compounded sequence control successfully addressed this longstanding challenge. Thus, LPP of acrylate/methacrylate mixtures under ambient temperature and normal concentration conditions rapidly and selectively affords well-defined cBCPs with high molecular weight (Mn = 247 kg/mol) and low dispersity (D = 1.04) in one step. Such cBCPs have been characterized by multiple techniques, including direct structural observation by imaging.

12.
J Am Chem Soc ; 142(13): 5969-5973, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32167755

ABSTRACT

The ability to synthesize well-defined block copolymers (BCPs) from one-pot comonomer mixtures has powerful chemical and practical implications. However, controlling sequences between highly reactive, homologous comonomers such as acrylates during polymerization is challenging. Here we present a Lewis pair polymerization strategy that uniquely utilizes preferential Lewis acid coordination to differentiate between comonomers, distinctive kinetics, and compounded thermodynamic and kinetic differentiation to precisely control sequences and suppress tapering and misincorporation errors, thus achieving well-defined and resolved di- or tri-BCPs of acrylates.

SELECTION OF CITATIONS
SEARCH DETAIL
...