Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 16(1): 225, 2016 10 13.
Article in English | MEDLINE | ID: mdl-27733139

ABSTRACT

BACKGROUND: The ability to modulate levels of individual fatty acids within soybean oil has potential to increase shelf-life and frying stability and to improve nutritional characteristics. Commodity soybean oil contains high levels of polyunsaturated linoleic and linolenic acid, which contribute to oxidative instability - a problem that has been addressed through partial hydrogenation. However, partial hydrogenation increases levels of trans-fatty acids, which have been associated with cardiovascular disease. Previously, we generated soybean lines with knockout mutations within fatty acid desaturase 2-1A (FAD2-1A) and FAD2-1B genes, resulting in oil with increased levels of monounsaturated oleic acid (18:1) and decreased levels of linoleic (18:2) and linolenic acid (18:3). Here, we stack mutations within FAD2-1A and FAD2-1B with mutations in fatty acid desaturase 3A (FAD3A) to further decrease levels of linolenic acid. Mutations were introduced into FAD3A by directly delivering TALENs into fad2-1a fad2-1b soybean plants. RESULTS: Oil from fad2-1a fad2-1b fad3a plants had significantly lower levels of linolenic acid (2.5 %), as compared to fad2-1a fad2-1b plants (4.7 %). Furthermore, oil had significantly lower levels of linoleic acid (2.7 % compared to 5.1 %) and significantly higher levels of oleic acid (82.2 % compared to 77.5 %). Transgene-free fad2-1a fad2-1b fad3a soybean lines were identified. CONCLUSIONS: The methods presented here provide an efficient means for using sequence-specific nucleases to stack quality traits in soybean. The resulting product comprised oleic acid levels above 80 % and linoleic and linolenic acid levels below 3 %.


Subject(s)
Glycine max/metabolism , Oleic Acid/genetics , Plant Proteins/metabolism , Soybean Oil/genetics , alpha-Linolenic Acid/genetics , Gene Editing , Mutation/genetics , Oleic Acid/metabolism , Plant Proteins/genetics , Soybean Oil/metabolism , Glycine max/genetics , alpha-Linolenic Acid/metabolism
2.
PLoS One ; 11(5): e0154634, 2016.
Article in English | MEDLINE | ID: mdl-27176769

ABSTRACT

Plant genome engineering using sequence-specific nucleases (SSNs) promises to advance basic and applied plant research by enabling precise modification of endogenous genes. Whereas DNA is an effective means for delivering SSNs, DNA can integrate randomly into the plant genome, leading to unintentional gene inactivation. Further, prolonged expression of SSNs from DNA constructs can lead to the accumulation of off-target mutations. Here, we tested a new approach for SSN delivery to plant cells, namely transformation of messenger RNA (mRNA) encoding TAL effector nucleases (TALENs). mRNA delivery of a TALEN pair targeting the Nicotiana benthamiana ALS gene resulted in mutation frequencies of approximately 6% in comparison to DNA delivery, which resulted in mutation frequencies of 70.5%. mRNA delivery resulted in three-fold fewer insertions, and 76% were <10bp; in contrast, 88% of insertions generated through DNA delivery were >10bp. In an effort to increase mutation frequencies using mRNA, we fused several different 5' and 3' untranslated regions (UTRs) from Arabidopsis thaliana genes to the TALEN coding sequence. UTRs from an A. thaliana adenine nucleotide α hydrolases-like gene (At1G09740) enhanced mutation frequencies approximately two-fold, relative to a no-UTR control. These results indicate that mRNA can be used as a delivery vehicle for SSNs, and that manipulation of mRNA UTRs can influence efficiencies of genome editing.


Subject(s)
Endonucleases/metabolism , Mutagenesis, Site-Directed/methods , Plant Cells/metabolism , Transformation, Genetic , Base Sequence , DNA, Plant/metabolism , Mutation/genetics , Mutation Rate , Protoplasts/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Nicotiana/genetics , Transcription Activator-Like Effector Nucleases/metabolism
3.
Plant Biotechnol J ; 14(1): 169-76, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25846201

ABSTRACT

Cold storage of potato tubers is commonly used to reduce sprouting and extend postharvest shelf life. However, cold temperature stimulates the accumulation of reducing sugars in potato tubers. Upon high-temperature processing, these reducing sugars react with free amino acids, resulting in brown, bitter-tasting products and elevated levels of acrylamide--a potential carcinogen. To minimize the accumulation of reducing sugars, RNA interference (RNAi) technology was used to silence the vacuolar invertase gene (VInv), which encodes a protein that breaks down sucrose to glucose and fructose. Because RNAi often results in incomplete gene silencing and requires the plant to be transgenic, here we used transcription activator-like effector nucleases (TALENs) to knockout VInv within the commercial potato variety, Ranger Russet. We isolated 18 plants containing mutations in at least one VInv allele, and five of these plants had mutations in all VInv alleles. Tubers from full VInv-knockout plants had undetectable levels of reducing sugars, and processed chips contained reduced levels of acrylamide and were lightly coloured. Furthermore, seven of the 18 modified plant lines appeared to contain no TALEN DNA insertions in the potato genome. These results provide a framework for using TALENs to quickly improve traits in commercially relevant autotetraploid potato lines.


Subject(s)
Cold Temperature , Cryopreservation/methods , Gene Knockout Techniques , Gene Targeting , Solanum tuberosum/genetics , Acrylamide/analysis , Base Sequence , Carbohydrates/analysis , Genes, Plant , Mutation/genetics , Plants, Genetically Modified , Transcription Activator-Like Effector Nucleases/metabolism , Vacuoles/enzymology , beta-Fructofuranosidase/genetics
4.
Plant Biotechnol J ; 14(2): 533-42, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26011187

ABSTRACT

Biopharmaceutical glycoproteins produced in plants carry N-glycans with plant-specific residues core α(1,3)-fucose and ß(1,2)-xylose, which can significantly impact the activity, stability and immunogenicity of biopharmaceuticals. In this study, we have employed sequence-specific transcription activator-like effector nucleases (TALENs) to knock out two α(1,3)-fucosyltransferase (FucT) and the two ß(1,2)-xylosyltransferase (XylT) genes within Nicotiana benthamiana to generate plants with improved capacity to produce glycoproteins devoid of plant-specific residues. Among plants regenerated from N. benthamiana protoplasts transformed with TALENs targeting either the FucT or XylT genes, 50% (80 of 160) and 73% (94 of 129) had mutations in at least one FucT or XylT allele, respectively. Among plants regenerated from protoplasts transformed with both TALEN pairs, 17% (18 of 105) had mutations in all four gene targets, and 3% (3 of 105) plants had mutations in all eight alleles comprising both gene families; these mutations were transmitted to the next generation. Endogenous proteins expressed in the complete knockout line had N-glycans that lacked ß(1,2)-xylose and had a significant reduction in core α(1,3)-fucose levels (40% of wild type). A similar phenotype was observed in the N-glycans of a recombinant rituximab antibody transiently expressed in the homozygous mutant plants. More importantly, the most desirable glycoform, one lacking both core α(1,3)-fucose and ß(1,2)-xylose residues, increased in the antibody from 2% when produced in the wild-type line to 55% in the mutant line. These results demonstrate the power of TALENs for multiplexed gene editing. Furthermore, the mutant N. benthamiana lines provide a valuable platform for producing highly potent biopharmaceutical products.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Gene Editing/methods , Genetic Engineering/methods , Nicotiana/genetics , Polysaccharides/metabolism , Base Sequence , Fucose/metabolism , Glycosylation , Mutation/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Polysaccharides/chemistry , Protoplasts/metabolism , Rituximab/biosynthesis , Transcription Activator-Like Effector Nucleases/metabolism , Transformation, Genetic , Xylose/metabolism
6.
Plant Biotechnol J ; 12(7): 934-40, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24851712

ABSTRACT

Soybean oil is high in polyunsaturated fats and is often partially hydrogenated to increase its shelf life and improve oxidative stability. The trans-fatty acids produced through hydrogenation pose a health threat. Soybean lines that are low in polyunsaturated fats were generated by introducing mutations in two fatty acid desaturase 2 genes (FAD2-1A and FAD2-1B), which in the seed convert the monounsaturated fat, oleic acid, to the polyunsaturated fat, linoleic acid. Transcription activator-like effector nucleases (TALENs) were engineered to recognize and cleave conserved DNA sequences in both genes. In four of 19 transgenic soybean lines expressing the TALENs, mutations in FAD2-1A and FAD2-1B were observed in DNA extracted from leaf tissue; three of the four lines transmitted heritable FAD2-1 mutations to the next generation. The fatty acid profile of the seed was dramatically changed in plants homozygous for mutations in both FAD2-1A and FAD2-1B: oleic acid increased from 20% to 80% and linoleic acid decreased from 50% to under 4%. Further, mutant plants were identified that lacked the TALEN transgene and only carried the targeted mutations. The ability to create a valuable trait in a single generation through targeted modification of a gene family demonstrates the power of TALENs for genome engineering and crop improvement.


Subject(s)
Fatty Acid Desaturases/genetics , Glycine max/genetics , Plant Proteins/genetics , Soybean Oil/chemistry , Base Sequence , Fatty Acids/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Nutritive Value/genetics , Oleic Acid/metabolism , Plants, Genetically Modified/chemistry , Plants, Genetically Modified/metabolism , Seeds/enzymology , Seeds/genetics , Seeds/metabolism , Sequence Alignment , Glycine max/enzymology , Glycine max/metabolism
7.
Plant Reprod ; 26(4): 339-50, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23963740

ABSTRACT

The Nicotiana tabacum transmitting tissue is a highly specialized file of metabolically active cells that is the pathway for pollen tubes from the stigma to the ovules where fertilization occurs. It is thought to be essential to pollen tube growth because of the nutrients and guidance it provides to the pollen tubes. It also regulates gametophytic self-incompatibility in the style. To test the function of the transmitting tissue in pollen tube growth and to determine its role in regulating prezygotic interspecific incompatibility, genetic ablation was used to eliminate the mature transmitting tissue, producing a hollow style. Despite the absence of the mature transmitting tissue and greatly reduced transmitting-tissue-specific gene expression, self-pollen tubes had growth to the end of the style. Pollen tubes grew at a slower rate in the transmitting-tissue-ablated line during the first 24 h post-pollination. However, pollen tubes grew to a similar length 40 h post-pollination with and without a transmitting tissue. Ablation of the N. tabacum transmitting tissue significantly altered interspecific pollen tube growth. These results implicate the N. tabacum transmitting tissue in facilitating or inhibiting interspecific pollen tube growth in a species-dependent manner and in controlling prezygotic reproductive barriers.


Subject(s)
Nicotiana/growth & development , Pollen Tube/growth & development , Cell Differentiation , Fertilization , Flowers/cytology , Flowers/genetics , Flowers/growth & development , Flowers/physiology , Hybridization, Genetic , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen Tube/cytology , Pollen Tube/genetics , Pollen Tube/physiology , Pollination , RNA, Plant/genetics , Species Specificity , Nicotiana/cytology , Nicotiana/genetics , Nicotiana/physiology
8.
Plant J ; 74(5): 805-14, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23461796

ABSTRACT

Pre-zygotic interspecific incompatibility (II) involves an active inhibition mechanism between the pollen of one species and the pistil of another. As a barrier to fertilization, II effectively prevents hybridization and maintains species identity. Transgenic ablation of the mature transmitting tract (TT) in Nicotiana tabacum resulted in the loss of inhibition of pollen tube growth in Nicotiana obtusifolia (synonym Nicotiana trigonophylla) and Nicotiana repanda. The role of the TT in the II interaction between N. tabacum and N. obtusifolia was characterized by evaluating N. obtusifolia pollen tube growth in normal and TT-ablated N. tabacum styles at various post-pollination times and developmental stages. The II activity of the TT slowed and then arrested N. obtusifolia pollen tube growth, and was developmentally synchronized. We hypothesize that proteins produced by the mature TT and secreted into the extracellular matrix inhibit interspecific pollen tubes. When extracts from the mature TT of N. tabacum were injected into the TT-ablated style prior to pollination, the growth of incompatible pollen tubes of N. obtusifolia and N. repanda was inhibited. The class III pistil-specific extensin-like protein (PELPIII) was consistently associated with specific inhibition of pollen tubes, and its requirement for II was confirmed through use of plants with antisense suppression of PELPIII. Inhibition of N. obtusifolia and N. repanda pollen tube growth required accumulation of PELPIII in the TT of N. tabacum, supporting PELPIII function in pre-zygotic II.


Subject(s)
Flowers/metabolism , Nicotiana/metabolism , Plant Proteins/metabolism , Pollen/metabolism , Fertilization , Flowers/growth & development , Immunoblotting , Plants, Genetically Modified , Pollen/growth & development , Pollen Tube/growth & development , Pollen Tube/metabolism , Pollination , Species Specificity , Nicotiana/classification , Nicotiana/genetics , Nicotiana/growth & development
9.
Sex Plant Reprod ; 25(1): 27-37, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22101491

ABSTRACT

Sexual plant reproduction requires multiple pollen-pistil interactions from the stigma (pollen adhesion, hydration, and germination) to the ovary (fertilization). Understanding the factors that regulate pollen tube growth is critical to understanding the processes essential to sexual reproduction. Many pollen tube growth assays (PTGAs) have shorter and slower pollen tube growth when compared to pollen tube growth through the style. The identification and study of factors that regulate pollen tube growth have been impeded by a lack of an efficient and reproducible PTGA. The objective of this research is to develop a robust assay for Nicotiana tabacum pollen tube growth in an environment that supports sustained and normal growth yet is amenable to testing the effects of specific factors. In this paper, we introduce a novel PTGA, which uses pistils from N. tabacum that lack a mature transmitting tract (TT) due to tissue-specific ablation. The TT-ablated style supports normal pollen tube growth and the hollow structure of the style allows modification of the growth environment by direct injection of test material. This PTGA is robust and allows for rapid and accurate measurement of pollen tube length and pollen tube morphology, supporting pollen tube growth from 20 to 35°C and at pH ranging from 4.8 to 7.6. Use of the ablated style for a PTGA is a novel method for the culture of pollen tubes with sustained growth in vivo while permitting the application of treatments to the growing pollen tubes.


Subject(s)
Nicotiana/physiology , Pollen Tube/growth & development , Pollination , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...