Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Pharmacol Exp Ther ; 358(3): 387-96, 2016 09.
Article in English | MEDLINE | ID: mdl-27335437

ABSTRACT

Cathepsin S inhibitors attenuate mechanical allodynia in preclinical neuropathic pain models. The current study evaluated the effects when combining the selective cathepsin S inhibitor MIV-247 with gabapentin or pregabalin in a mouse model of neuropathic pain. Mice were rendered neuropathic by partial sciatic nerve ligation. MIV-247, gabapentin, or pregabalin were administered alone or in combination via oral gavage. Mechanical allodynia was assessed using von Frey hairs. Neurobehavioral side effects were evaluated by assessing beam walking. MIV-247, gabapentin, and pregabalin concentrations in various tissues were measured. Oral administration of MIV-247 (100-200 µmol/kg) dose-dependently attenuated mechanical allodynia by up to approximately 50% reversal when given as a single dose or when given twice daily for 5 days. No behavioral deficits were observed at any dose of MIV-247 tested. Gabapentin (58-350 µmol/kg) and pregabalin (63-377 µmol/kg) also inhibited mechanical allodynia with virtually complete reversal at the highest doses tested. The minimum effective dose of MIV-247 (100 µmol/kg) in combination with the minimum effective dose of pregabalin (75 µmol/kg) or gabapentin (146 µmol/kg) resulted in enhanced antiallodynic efficacy without augmenting side effects. A subeffective dose of MIV-247 (50 µmol/kg) in combination with a subeffective dose of pregabalin (38 µmol/kg) or gabapentin (73 µmol/kg) also resulted in substantial efficacy. Plasma levels of MIV-247, gabapentin, and pregabalin were similar when given in combination as to when given alone. Cathepsin S inhibition with MIV-247 exerts significant antiallodynic efficacy alone, and also enhances the effect of gabapentin and pregabalin without increasing side effects or inducing pharmacokinetic interactions.


Subject(s)
Amines/pharmacology , Cathepsins/antagonists & inhibitors , Cyclohexanecarboxylic Acids/pharmacology , Dipeptides/pharmacology , Hyperalgesia/drug therapy , Neuralgia/drug therapy , Pregabalin/pharmacology , Protease Inhibitors/pharmacology , gamma-Aminobutyric Acid/pharmacology , Animals , Behavior, Animal/drug effects , Dipeptides/therapeutic use , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Synergism , Gabapentin , Humans , Hyperalgesia/enzymology , Male , Mice , Neuralgia/enzymology , Protease Inhibitors/therapeutic use
2.
Bioorg Med Chem ; 17(3): 1307-24, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-19124252

ABSTRACT

Highly potent and selective 4-amidofuran-3-one inhibitors of cathepsin S are described. The synthesis and structure-activity relationship of a series of inhibitors with a sulfonamide moiety in the P3 position is presented. Several members of the series show sub-nanomolar inhibition of the target enzyme as well as an excellent selectivity profile and good cellular potency. Molecular modeling of the most interesting inhibitors describes interactions in the extended S3 pocket and explains the observed selectivity towards cathepsin K.


Subject(s)
Cathepsins/antagonists & inhibitors , Furans/chemistry , Protease Inhibitors/chemistry , Sulfonamides/chemistry , Cathepsin K , Computer Simulation , Furans/chemical synthesis , Furans/pharmacology , Humans , Models, Molecular , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/pharmacology
3.
Bioorg Med Chem Lett ; 18(23): 6189-93, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-18954982

ABSTRACT

A novel series of P3-truncated macrocyclic HCV NS3/4A protease inhibitors containing a P2 proline-urea or carbamate scaffold was synthesized. Very potent inhibitors were obtained through the optimization of the macrocycle size, urea and proline substitution, and bioisosteric replacement of the P1 carboxylic acid moiety. Variation of the lipophilicity by introduction of small lipophilic substituents resulted in improved PK profiles, ultimately leading to compound 13Bh, an extremely potent (K(i)=0.1 nM, EC(50)=4.5 nM) and selective (CC(50) (Huh-7 cells)>50 microM) inhibitor, displaying an excellent PK profile in rats characterized by an oral bioavailability of 54% and a high liver exposure after oral administration.


Subject(s)
Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Hepacivirus/drug effects , Proline/chemical synthesis , Proline/pharmacology , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/pharmacology , Urea/analogs & derivatives , Urea/chemical synthesis , Urea/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Administration, Oral , Animals , Antiviral Agents/chemistry , Carbamates/pharmacology , Carbamates/therapeutic use , Combinatorial Chemistry Techniques , Drug Design , Male , Models, Molecular , Molecular Structure , Proline/analogs & derivatives , Proline/chemistry , Rats , Rats, Sprague-Dawley , Serine Proteinase Inhibitors/chemistry , Structure-Activity Relationship , Urea/chemistry
4.
Bioorg Med Chem ; 15(22): 7184-202, 2007 Nov 15.
Article in English | MEDLINE | ID: mdl-17845856

ABSTRACT

Several highly potent novel HCV NS3 protease inhibitors have been developed from two inhibitor series containing either a P2 trisubstituted macrocyclic cyclopentane- or a P2 cyclopentene dicarboxylic acid moiety as surrogates for the widely used N-acyl-(4R)-hydroxyproline in the P2 position. These inhibitors were optimized for anti HCV activities through examination of different ring sizes in the macrocyclic systems and further by exploring the effect of P4 substituent removal on potency. The target molecules were synthesized from readily available starting materials, furnishing the inhibitor compounds in good overall yields. It was found that the 14-membered ring system was the most potent in these two series and that the corresponding 13-, 15-, and 16-membered macrocyclic rings delivered less potent inhibitors. Moreover, the corresponding P1 acylsulfonamides had superior potencies over the corresponding P1 carboxylic acids. It is noteworthy that it has been possible to develop highly potent HCV protease inhibitors that altogether lack the P4 substituent. Thus the most potent inhibitor described in this work, inhibitor 20, displays a K(i) value of 0.41 nM and an EC(50) value of 9 nM in the subgenomic HCV replicon cell model on genotype 1b. To the best of our knowledge this is the first example described in the literature of a HCV protease inhibitor displaying high potency in the replicon assay and lacking the P4 substituent, a finding which should facilitate the development of orally active small molecule inhibitors against the HCV protease.


Subject(s)
Cyclopentanes/pharmacology , Enzyme Inhibitors/pharmacology , Macrocyclic Compounds/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Binding Sites , Cell Line , Crystallography, X-Ray , Cyclization , Cyclopentanes/chemical synthesis , Cyclopentanes/chemistry , Dicarboxylic Acids/chemistry , Dose-Response Relationship, Drug , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Hepacivirus/enzymology , Humans , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Models, Molecular , Molecular Conformation , Stereoisomerism , Structure-Activity Relationship , Virus Replication/drug effects
5.
Eur J Biochem ; 271(22): 4594-602, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15560801

ABSTRACT

HIV-1 protease is a pivotal enzyme in the later stages of the viral life cycle which is responsible for the processing and maturation of the virus particle into an infectious virion. As such, HIV-1 protease has become an important target for the treatment of AIDS, and efficient drugs have been developed. However, negative side effects and fast emerging resistance to the current drugs have necessitated the development of novel chemical entities in order to exploit different pharmacokinetic properties as well as new interaction patterns. We have used X-ray crystallography to decipher the structure-activity relationship of fluoro-substitution as a strategy to improve the antiviral activity and the protease inhibition of C2-symmetric diol-based inhibitors. In total we present six protease-inhibitor complexes at 1.8-2.3 A resolution, which have been structurally characterized with respect to their antiviral and inhibitory activities, in order to evaluate the effects of different fluoro-substitutions. These C2-symmetric inhibitors comprise mono- and difluoro-substituted benzyloxy side groups in P1/P1' and indanoleamine side groups in P2/P2'. The ortho- and meta-fluorinated P1/P1'-benzyloxy side groups proved to have the most cytopathogenic effects compared with the nonsubstituted analog and related C2-symmetric diol-based inhibitors. The different fluoro-substitutions are well accommodated in the protease S1/S1' subsites, as observed by an increase in favorable Van der Waals contacts and surface area buried by the inhibitors. These data will be used in the development of potent inhibitors with different pharmacokinetic profiles towards resistant protease mutants.


Subject(s)
Benzene Derivatives/chemistry , Benzene Derivatives/pharmacology , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacology , HIV-1/enzymology , Hydrocarbons, Fluorinated/chemistry , Hydrocarbons, Fluorinated/pharmacology , Amino Acids/chemistry , Amino Acids/metabolism , Benzene Derivatives/metabolism , Binding Sites , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , HIV Protease/chemistry , HIV Protease/genetics , HIV Protease/metabolism , HIV Protease Inhibitors/metabolism , Humans , Hydrocarbons, Fluorinated/metabolism , Models, Molecular , Molecular Conformation , Molecular Structure , Protein Binding , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Static Electricity , Structure-Activity Relationship
6.
Eur J Biochem ; 270(8): 1746-58, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12694187

ABSTRACT

HIV-1 protease is an important target for treatment of AIDS, and efficient drugs have been developed. However, the resistance and negative side effects of the current drugs has necessitated the development of new compounds with different binding patterns. In this study, nine C-terminally duplicated HIV-1 protease inhibitors were cocrystallised with the enzyme, the crystal structures analysed at 1.8-2.3 A resolution, and the inhibitory activity of the compounds characterized in order to evaluate the effects of the individual modifications. These compounds comprise two central hydroxy groups that mimic the geminal hydroxy groups of a cleavage-reaction intermediate. One of the hydroxy groups is located between the delta-oxygen atoms of the two catalytic aspartic acid residues, and the other in the gauche position relative to the first. The asymmetric binding of the two central inhibitory hydroxyls induced a small deviation from exact C2 symmetry in the whole enzyme-inhibitor complex. The study shows that the protease molecule could accommodate its structure to different sizes of the P2/P2' groups. The structural alterations were, however, relatively conservative and limited. The binding capacity of the S3/S3' sites was exploited by elongation of the compounds with groups in the P3/P3' positions or by extension of the P1/P1' groups. Furthermore, water molecules were shown to be important binding links between the protease and the inhibitors. This study produced a number of inhibitors with Ki values in the 100 picomolar range.


Subject(s)
HIV Protease Inhibitors/chemistry , HIV Protease/metabolism , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , DNA Primers , HIV Protease/chemistry , HIV Protease/genetics , HIV Protease Inhibitors/pharmacology , HIV-1/enzymology , Kinetics , Models, Molecular , Protein Conformation , Structure-Activity Relationship
7.
J Org Chem ; 61(18): 6282-6288, 1996 Sep 06.
Article in English | MEDLINE | ID: mdl-11667468

ABSTRACT

The synthesis of the enantiomerically pure bis(hydroxymethyl)-branched cyclohexenyl and cyclohexyl purines is described. Racemic trans-4,5-bis(methoxycarbonyl)cyclohexene [(+/-)-6] was reduced with lithium aluminum hydride to give the racemic diol (+/-)-7. Resolution of (+/-)-7 via a transesterification process using lipase from Pseudomonas sp. (SAM-II) gave both diols in enantiomerically pure form. The enantiomerically pure diol (S,S)-7was benzoylated and epoxidized to give the epoxide 9. Treatment of the epoxide 9 with trimethylsilyl trifluoromethanesulfonate and 1,5-diazabicyclo[5.4.0]undec-5-ene followed by dilute hydrochloric acid gave (1R,4S,5R)-4,5-bis[(benzoyloxy)methyl]-1-hydroxycyclohex-2-ene (10). Acetylation of 10 gave (1R,4S,5R)-1-acetoxy-4,5-bis[(benzoyloxy)methyl]cyclohex-2-ene (11). (1R,4S,5R)-1-Acetoxy-4,5-bis[(benzoyloxy)methyl]cyclohex-2-ene (11) was converted to the adenine derivative 12 and guanine derivative 13 via palladium(0)-catalyzed coupling with adenine and 2-amino-6-chloropurine, respectively. Hydrogenation of 12 and 13 gave the correspondning saturated adenine derivative 14 and guanine derivative 15. (1R,4S,5R)-4,5-Bis[(benzoyloxy)methyl]-1-hydroxycyclohex-2-ene (10) was converted to the adenine derivative 16 and guanine derivative 17 via coupling with 6-chloropurine and 2-amino-6-chloropurine, respectively, using a modified Mitsunobu procedure. Hydrogenation of 16 and 17 gave the corresponding saturated adenine derivative 18 and guanine derivative 19. Compounds 12-19 were evaluated for activity against human immunodeficiency virus (HIV), but were found to be inactive. Further biological testings are underway.

8.
J Org Chem ; 61(11): 3599-3603, 1996 May 31.
Article in English | MEDLINE | ID: mdl-11667204

ABSTRACT

The synthesis of 1,3-dioxolan-2-ylnucleosides and related chemistry is described. We have shown that 2-methoxy-1,3-dioxolane (6) reacts with silylated thymine and trimethylsilyl triflate to give the acyclic formate ester 1-[2-(formyloxy)ethyl]thymine (8) rather than 1-(1,3-dioxolan-2-yl)thymine (7). A tentative mechanism which could explain this result is discussed. On the other hand, 2-methoxy-1,3-dioxolane 13c reacts with silylated bases to give [4,5-bis(hydroxymethyl)-1,3-dioxolan-2-yl]nucleosides, thus representing the first examples of this novel class of compounds. The nature of the nucleobase and the hydroxyl protecting groups was found to have great influence on the reaction and on the stability of the nucleosides. Compounds 16 and 18 were found to be inactive when tested for anti HIV-1 activity in vitro.

9.
J Org Chem ; 61(11): 3604-3610, 1996 May 31.
Article in English | MEDLINE | ID: mdl-11667205

ABSTRACT

The synthesis of [4,5-bis(hydroxymethyl)-1,3-oxathiolan-2-yl]nucleosides is described. 2,3-Epoxy alcohol 10 was converted in one pot into thioacetate 11. Treatment of 11 under mild alkaline conditions gave thiirane 12 with inversion of configuration at C-2. We also found that thioacetate 11 rearranges into thiirane 14 under mild acidic conditions. This rearrangement reaction was shown by independent synthesis to proceed with net retention of configuration at C-2. We have proposed a tentative mechanism which may explain the results obtained. Opening of thiiranes 12 and 14 followed by deprotection gave (2R,3R)-2-thiothreitol (23) and (2S,3R)-2-thioerythritol (25), respectively. Regioselective silylation of the primary hydroxyl groups of 23 followed by treatment with trimethyl orthoformate gave 2-methoxy-1,3-oxathiolanes 26 and 27. Condensation with silylated bases followed by deprotection and separation of the anomers gave the oxathiolanylnucleosides. Compounds 29-31, 34, and 35 were found to be inactive when tested for inhibition of HIV-1 activity in vitro.

10.
J Org Chem ; 61(11): 3611-3615, 1996 May 31.
Article in English | MEDLINE | ID: mdl-11667206

ABSTRACT

The synthesis of [4,5-bis(hydroxymethyl)-1,3-dithiolan-2-yl]nucleosides is described. (2S,3S)-1,2:3,4-Diepoxybutane (13) was reacted with potassium thiocyanate to give (2R,3R)-1,2:3,4-diepithiobutane (14). Thiiranering opening with acetate followed by deacetylation gave (2R,3R)-2,3-dithiothreitol (19) which was silylated and treated with trimethyl orthoformate to give the 2-methoxy-1,3-dithiolane 20. Condensation of 20 with silylated thymine, uracil, N(4)-benzoylcytosine and 6-chloropurine using a modified Vorbrüggen procedure, followed by deprotection, gave the nucleoside analogues. Compounds 26, 28, and 30 were found to be inactive when tested for anti-HIV activity in vitro.

SELECTION OF CITATIONS
SEARCH DETAIL
...