Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 231
Filter
1.
bioRxiv ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38979162

ABSTRACT

The liver, the largest internal organ and a metabolic hub, undergoes significant declines due to aging, affecting mitochondrial function and increasing the risk of systemic liver diseases. How the mitochondrial three-dimensional (3D) structure changes in the liver across aging, and the biological mechanisms regulating such changes confers remain unclear. In this study, we employed Serial Block Face-Scanning Electron Microscopy (SBF-SEM) to achieve high-resolution 3D reconstructions of murine liver mitochondria to observe diverse phenotypes and structural alterations that occur with age, marked by a reduction in size and complexity. We also show concomitant metabolomic and lipidomic changes in aged samples. Aged human samples reflected altered disease risk. To find potential regulators of this change, we examined the Mitochondrial Contact Site and Cristae Organizing System (MICOS) complex, which plays a crucial role in maintaining mitochondrial architecture. We observe that the MICOS complex is lost during aging, but not Sam50. Sam50 is a component of the sorting and assembly machinery (SAM) complex that acts in tandem with the MICOS complex to modulate cristae morphology. In murine models subjected to a high-fat diet, there is a marked depletion of the mitochondrial protein SAM50. This reduction in Sam50 expression may heighten the susceptibility to liver disease, as our human biobank studies corroborate that Sam50 plays a genetically regulated role in the predisposition to multiple liver diseases. We further show that changes in mitochondrial calcium dysregulation and oxidative stress accompany the disruption of the MICOS complex. Together, we establish that a decrease in mitochondrial complexity and dysregulated metabolism occur with murine liver aging. While these changes are partially be regulated by age-related loss of the MICOS complex, the confluence of a murine high-fat diet can also cause loss of Sam50, which contributes to liver diseases. In summary, our study reveals potential regulators that affect age-related changes in mitochondrial structure and metabolism, which can be targeted in future therapeutic techniques.

3.
bioRxiv ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38915644

ABSTRACT

The kidney filters nutrient waste and bodily fluids from the bloodstream, in addition to secondary functions of metabolism and hormone secretion, requiring an astonishing amount of energy to maintain its functions. In kidney cells, mitochondria produce adenosine triphosphate (ATP) and help maintain kidney function. Due to aging, the efficiency of kidney functions begins to decrease. Dysfunction in mitochondria and cristae, the inner folds of mitochondria, is a hallmark of aging. Therefore, age-related kidney function decline could be due to changes in mitochondrial ultrastructure, increased reactive oxygen species (ROS), and subsequent alterations in metabolism and lipid composition. We sought to understand if there is altered mitochondrial ultrastructure, as marked by 3D morphological changes, across time in tubular kidney cells. Serial block facing-scanning electron microscope (SBF-SEM) and manual segmentation using the Amira software were used to visualize murine kidney samples during the aging process at 3 months (young) and 2 years (old). We found that 2-year mitochondria are more fragmented, compared to the 3-month, with many uniquely shaped mitochondria observed across aging, concomitant with shifts in ROS, metabolomics, and lipid homeostasis. Furthermore, we show that the mitochondrial contact site and cristae organizing system (MICOS) complex is impaired in the kidney due to aging. Disruption of the MICOS complex shows altered mitochondrial calcium uptake and calcium retention capacity, as well as generation of oxidative stress. We found significant, detrimental structural changes to aged kidney tubule mitochondria suggesting a potential mechanism underlying why kidney diseases occur more readily with age. We hypothesize that disruption in the MICOS complex further exacerbates mitochondrial dysfunction, creating a vicious cycle of mitochondrial degradation and oxidative stress, thus impacting kidney health.

4.
bioRxiv ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38915603

ABSTRACT

BACKGROUND: Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular morbidity and mortality, yet the etiology is poorly understood. We previously found that serum/glucocorticoid-regulated kinase 1 (SGK1) and epoxyeicosatrienoic acids (EETs) regulate epithelial sodium channel (ENaC)-dependent sodium entry into monocyte-derived antigen-presenting cells (APCs) and activation of NADPH oxidase, leading to the formation of isolevuglandins (IsoLGs) in SSBP. Whereas aldosterone via the mineralocorticoid receptor (MR) activates SGK1 leading to hypertension, our past findings indicate that levels of plasma aldosterone do not correlate with SSBP, and there is little to no MR expression in APCs. Thus, we hypothesized that cortisol acting via the glucocorticoid receptor (GR), not the MR in APCs mediates SGK1 actions to induce SSBP. METHODS: We performed cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq) analysis on peripheral blood mononuclear cells of humans rigorously phenotyped for SSBP using an inpatient salt loading/depletion protocol to determine expression of MR, GR, and SGK1 in immune cells. In additional experiments, we performed bulk transcriptomic analysis on isolated human monocytes following in vitro treatment with high salt from a separate cohort. We then measured urine and plasma cortisol, cortisone, renin, and aldosterone. Subsequently, we measured the association of these hormones with changes in systolic, diastolic, mean arterial pressure and pulse pressure as well as immune cell activation via IsoLG formation. RESULTS: We found that myeloid APCs predominantly express the GR and SGK1 with no expression of the MR. Expression of the GR in APCs increased after salt loading and decreased with salt depletion in salt-sensitive but not salt-resistant people and was associated with increased expression of SGK1. Moreover, we found that plasma and urine cortisol/cortisone but not aldosterone/renin correlated with SSBP and APCs activation via IsoLGs. We also found that cortisol negatively correlates with EETs. CONCLUSION: Our findings suggest that renal cortisol signaling via the GR but not the MR in APCs contributes to SSBP via cortisol. Urine and plasma cortisol may provide an important currently unavailable feasible diagnostic tool for SSBP. Moreover, cortisol-GR-SGK1-ENaC signaling pathway may provide treatment options for SSBP.

5.
Physiol Rep ; 12(11): e16048, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38872467

ABSTRACT

Studying acute changes in vascular endothelial cells in humans is challenging. We studied ten African American women and used the J-wire technique to isolate vein endothelial cells before and after a four-hour lipid and heparin infusion. Dynamic changes in lipid-induced oxidative stress and inflammatory markers were measured with fluorescence-activated cell sorting. We used the surface markers CD31 and CD144 to identify human endothelial cells. Peripheral blood mononuclear cells isolated from blood were used as a negative control. The participants received galantamine (16 mg/day) for 3 months. We previously demonstrated that galantamine treatment effectively suppresses lipid-induced oxidative stress and inflammation. In this study, we infused lipids to evaluate its potential to increase the activation of endothelial cells, as assessed by the levels of CD54+ endothelial cells and expression of Growth arrest-specific 6 compared to the baseline sample. Further, we aimed to investigate whether lipid infusion led to increased expression of the oxidative stress markers IsoLGs and nitrotyrosine in endothelial cells. This approach will expedite the in vivo identification of novel pathways linked with endothelial cell dysfunction induced by oxidative stress and inflammatory cytokines. This study describes an innovative method to harvest and study human endothelial cells and demonstrates the dynamic changes in oxidative stress and inflammatory markers release induced by lipid infusion.


Subject(s)
Endothelial Cells , Inflammation , Oxidative Stress , Humans , Oxidative Stress/drug effects , Female , Inflammation/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Adult , Galantamine/pharmacology , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Antigens, CD/metabolism , Cadherins/metabolism , Tyrosine/metabolism , Tyrosine/analogs & derivatives , Tyrosine/pharmacology , Middle Aged , Intercellular Adhesion Molecule-1/metabolism , Lipids/pharmacology
6.
bioRxiv ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38798364

ABSTRACT

Alzheimer's Disease (AD) is a global health issue, affecting over 6 million in the United States, with that number expected to increase as the aging population grows. As a neurodegenerative disorder that affects memory and cognitive functions, it is well established that AD is associated with cardiovascular risk factors beyond only cerebral decline. However, the study of cerebrovascular techniques for AD is still evolving. Here, we provide reproducible methods to measure impedance-based pulse wave velocity (PWV), a marker of arterial stiffness, in the systemic vascular (aortic PWV) and in the cerebral vascular (cerebral PWV) systems. Using aortic impedance and this relatively novel technique of cerebral impedance to comprehensively describe the systemic vascular and the cerebral vascular systems, we examined the sex-dependent differences in 5x transgenic mice (5XFAD) with AD under normal and high-fat diet, and in wild-type mice under a normal diet. Additionally, we validated our method for measuring cerebrovascular impedance in a model of induced stress in 5XFAD. Together, our results show that sex and diet differences in wildtype and 5XFAD mice account for very minimal differences in cerebral impedance. Interestingly, 5XFAD, and not wildtype, male mice on a chow diet show higher cerebral impedance, suggesting pathological differences. Opposingly, when we subjected 5XFAD mice to stress, we found that females showed elevated cerebral impedance. Using this validated method of measuring impedance-based aortic and cerebral PWV, future research may explore the effects of modifying factors including age, chronic diet, and acute stress, which may mediate cardiovascular risk in AD.

7.
Am J Ophthalmol ; 261: 141-164, 2024 May.
Article in English | MEDLINE | ID: mdl-38311154

ABSTRACT

PURPOSE: To compare the prevalence, location and magnitude of optic nerve head (ONH) OCT-detected, exposed neural canal (ENC), externally oblique choroidal border tissue (EOCBT) and exposed scleral flange (ESF) regions in 122 highly myopic (Hi-Myo) versus 362 nonhighly myopic healthy (Non-Hi-Myo-Healthy) eyes. DESIGN: Cross-sectional study. METHODS: After OCT radial B-scan, ONH imaging, Bruch's membrane opening (BMO), the anterior scleral canal opening (ASCO), and the scleral flange opening (SFO) were manually segmented in each B-scan and projected to BMO reference plane. The direction and magnitude of BMO/ASCO offset and BMO/SFO offset as well as the location and magnitude of ENC, EOCBT and ESF regions, perineural canal (pNC) retinal nerve fiber layer thickness (RNFLT) and pNC choroidal thickness (CT) were calculated within 30° sectors relative to the Foveal-BMO (FoBMO) axis. Hi-ESF eyes were defined to be those with an ESF region ≥100 µms in at least 1 sector. RESULTS: Hi-Myo eyes more frequently demonstrated Hi-ESF regions (87/122) than Non-Hi-myo-Healthy eyes (73/362) and contained significantly larger ENC, EOCBT, and ESF regions (P < .001) which were greatest in magnitude and prevalence within the inferior-temporal FoBMO sectors where Hi-Myo pNC-RNFLT and pNCCT were thinnest. BMO/ASCO offset and the BMO/SFO offset were both significantly increased (P < .001) in the Hi-Myo eyes, with the latter demonstrating a greater increase. CONCLUSIONS: ENC region tissue remodeling that includes the scleral flange is enhanced in Hi-Myo compared to Non-Hi-Myo-Healthy eyes. Longitudinal studies are necessary to determine whether the presence of an ENC region influences ONH susceptibility to aging and/or glaucoma.


Subject(s)
Myopia , Optic Disk , Humans , Optic Disk/anatomy & histology , Tomography, Optical Coherence/methods , Neural Tube , Cross-Sectional Studies , Myopia/diagnosis , Bruch Membrane/anatomy & histology , Intraocular Pressure
8.
Hypertension ; 81(3): 436-446, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38164753

ABSTRACT

Hypertension is the primary modifiable risk factor for cardiovascular, renal, and cerebrovascular diseases and is considered the main contributing factor to morbidity and mortality worldwide. Approximately 50% of hypertensive and 25% of normotensive people exhibit salt sensitivity of blood pressure, which is an independent risk factor for cardiovascular disease. Human and animal studies demonstrate that the immune system plays an important role in the etiology and pathogenesis of salt sensitivity of blood pressure, kidney damage, and vascular diseases. Antigen-presenting and adaptive immune cells are implicated in salt-sensitive hypertension and salt-induced renal and vascular injury. Elevated sodium activates antigen-presenting cells to release proinflammatory cytokines including IL (interleukin) 6, tumor necrosis factor-α, IL-1ß, and accumulate isolevuglandin-protein adducts. In turn, these activate T cells release prohypertensive cytokines including IL-17A. Moreover, high-salt intake is associated with gut dysbiosis, leading to inflammation, oxidative stress, and blood pressure elevation but the mechanistic contribution to salt-sensitivity of blood pressure is not clearly understood. Here, we discuss recent advances in research investigating the cause, potential biomarkers, and therapeutic targets for salt-sensitive hypertension as they pertain to the gut microbiome, immunity, and inflammation.


Subject(s)
Hypertension , Kidney Diseases , Animals , Humans , Sodium Chloride, Dietary/adverse effects , Sodium Chloride , Kidney Diseases/complications , Blood Pressure/physiology , Inflammation , Cytokines , Interleukin-6
9.
Am J Ophthalmol ; 258: 55-75, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37673378

ABSTRACT

PURPOSE: To determine the prevalence and magnitude of optical coherence tomography (OCT) exposed neural canal (ENC), externally oblique choroidal border tissue (EOCBT), and exposed scleral flange (ESF) regions in 362 non-highly myopic (spherical equivalent -6.00 to 5.75 diopters) eyes of 362 healthy subjects. DESIGN: Cross-sectional study. METHODS: After OCT optic nerve head (ONH) imaging, Bruch membrane opening (BMO), the anterior scleral canal opening (ASCO), and the scleral flange opening (SFO) were manually segmented. BMO, ASCO, and SFO points were projected to the BMO reference plane. The direction and magnitude of BMO/ASCO offset as well as the magnitude of ENC, EOCBT, and ESF was calculated within 30° sectors relative to the foveal-BMO axis. Hi-ESF eyes demonstrated an ESF ≥100 µm in at least 1 sector. Sectoral peri-neural canal choroidal thickness (pNC-CT) was measured and correlations between the magnitude of sectoral ESF and proportional pNC-CT were assessed. RESULTS: Seventy-three Hi-ESF (20.2%) and 289 non-Hi-ESF eyes (79.8%) were identified. BMO/ASCO offset as well as ENC, EOCBT, and ESF prevalence and magnitude were greatest inferior temporally where the pNC-CT was thinnest. Among Hi-ESF eyes, the magnitude of each ENC region correlated with the BMO/ASCO offset magnitude, and the sectors with the longest ESF correlated with the sectors with proportionally thinnest pNC-CT. CONCLUSIONS: ONH BMO/ASCO offset, either as a cause or result of ONH neural canal remodeling, corresponds with the sectoral location of maximum ESF and minimum pNC-CT in non-highly myopic eyes. Longitudinal studies to characterize the development and clinical implications of ENC Hi-ESF regions in non-highly myopic and highly myopic eyes are indicated.


Subject(s)
Myopia , Optic Disk , Humans , Tomography, Optical Coherence/methods , Neural Tube , Cross-Sectional Studies , Myopia/diagnosis , Bruch Membrane , Intraocular Pressure
10.
Chemosphere ; 345: 140441, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37844697

ABSTRACT

We present lead (Pb) concentrations and isotope ratios in a continuous series of 38 snow samples from a 1.9-m snow pit, covering the period from winter 2012 to summer 2017, at the East Greenland Ice-core Project (EGRIP) ice core drill site in northwestern Greenland. Pb concentrations were highly variable, ranging from 1.53 to 94.9 pg g-1 (mean value of 10.6 pg g-1), with higher concentrations during winter and spring and lower concentrations during summer and fall. Our results show a substantial reduction in the Pb concentration of ∼50% between the 2000s and 2010s, reaching a level close to that observed in the mid-18th century, that is, the time of the Industrial Revolution. Remarkably low radiogenic Pb isotope compositions were observed in our samples compared to previously reported values during the 2000s. The Pb isotope mixing model results indicated a decreasing Chinese contribution from the 2000s onwards, while Europe/Russia emerged as a relatively more important contributor to the anthropogenic Pb input to central Greenland during the corresponding period. Thus, we hypothesized that the reduction in Pb pollution in central Greenland is largely due to a decreasing contribution from Chinese sources in response to the effectiveness of stringent emission control measures in China.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Greenland , Lead , Snow , Environmental Monitoring/methods , Isotopes/analysis
11.
Rev Mal Respir ; 40(7): 604-622, 2023 Sep.
Article in French | MEDLINE | ID: mdl-37357041

ABSTRACT

INTRODUCTION: Long COVID refers to persistent symptoms, lasting more than 4 weeks after acute SARS-CoV-2 infection, even though the infection itself has been successfully controlled and remedied. Patient complaints are diverse, and the underlying physiopathological mechanisms are not well understood. Dyspnea and muscle fatigue are among the most commonly reported symptoms. STATE OF THE ART: Cardiopulmonary exercise test (CPET) has been recognized as a useful tool in investigation of unexplained dyspnea. In patients with chronic lung disease, pulmonary rehabilitation is a program designed to counteract dyspnea, to increase exercise capacity and to improve quality of life. PERSPECTIVES: Publications on CPET and pulmonary rehabilitation are needed in order to deepen comprehension and enhance management of long-COVID-19. CONCLUSIONS: CPET reports have shown that symptoms persisting in the aftermath of acute SARS-CoV-2 infection may be related to deconditioning, a common occurrence after ICU stay, to cardiac dysautonomia subsequent to critical infections and, finally, to dysfunctional breathing subsequent to mild infections. These findings justify pulmonary rehabilitation, which has proven to be effective regardless of the severity of the initial infection, not only immediately after hospital discharge, but also at later points in time.


Subject(s)
COVID-19 , Humans , Exercise Test , Post-Acute COVID-19 Syndrome , Quality of Life , SARS-CoV-2 , Dyspnea/diagnosis , Dyspnea/etiology
12.
Ophthalmol Glaucoma ; 6(5): 501-508, 2023.
Article in English | MEDLINE | ID: mdl-37084868

ABSTRACT

PURPOSE: To evaluate eye drop self-administration in a low-vision patient population and test whether a nose-pivoted drop delivery device (NPDD, GentleDrop) can improve eye drop delivery in these patients. DESIGN: Repeated-measures case series. PARTICIPANTS: Thirty subjects (58 eyes) with low vision, defined as best-corrected visual acuity worse than 20/60 or visual field worse than 20° in the better-seeing eye. METHODS: We video-recorded subjects while self-administering eye drops using their own traditional delivery at baseline, after a standardized teaching, and with an NPDD. Two masked graders independently reviewed each drop delivery. Primary success was defined as the drop reaching the eye without the bottle touching the eye or eyelids. Subjects rated ease-of-use (1-10 scale, 10 = easiest) after each drop delivery and completed a satisfaction survey, which included asking whether subjects could place drops independently (1-5 scale, 5 = most independent). MAIN OUTCOME MEASURES: Logistic-transformed generalized estimating equation regression to compare technique satisfaction, ease-of-use, independence, no contact, and success. RESULTS: Primary success was observed in 30 (52%) of 58 eyes at baseline and increased to 44 eyes (76%) with an NPDD (P = 0.013). Bottle tip contact occurred in 23 (40%) of 58 eyes at baseline and 8 eyes (14%) with an NPDD (P = 0.004). Mean ease-of-use scores were 6.7 ± 3.1 at baseline and 8.3 ± 1.8 (P < 0.001) with an NPDD. Likewise, the NPDD improved success, bottle tip contact, and ease-of-use compared with post-teaching traditional delivery (P < 0.01). Twenty-two (73%) of 30 subjects preferred the NPDD to traditional delivery. Twenty-nine (97%) thought the NPDD was comfortable to use, and all would recommend the device. A subgroup analysis was performed on 16 subjects that self-reported difficulty instilling drops at baseline. The NPDD showed similar results, and it increased confidence in placing drops independently (4.6 ± 0.9) compared with baseline (2.7 ± 1.6, P < 0.001). Fifteen (94%) subjects in this subgroup preferred the NPDD. CONCLUSIONS: Low-vision subjects struggled to self-administer eye drops. An NPDD can improve bottle tip contact, ease-of-use, satisfaction, and independence. Eye care providers could consider screening low-vision patients about difficulty with eye drop self-administration and recommending eye drop aids. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.


Subject(s)
Vision, Low , Humans , Ophthalmic Solutions , Visual Fields , Surveys and Questionnaires , Self Report
13.
Phys Rev Lett ; 130(11): 111501, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-37001081

ABSTRACT

Vacuum quantum fluctuations near horizons are known to yield correlated emission by the Hawking effect. We use a driven-dissipative quantum fluid of microcavity polaritons as an analog model of a quantum field theory on a black-hole spacetime and numerically calculate correlated emission. We show that, in addition to the Hawking effect at the sonic horizon, quantum fluctuations may result in a sizable stationary excitation of a quasinormal mode of the field theory. Observable signatures of the excitation of the quasinormal mode are found in the spatial density fluctuations as well as in the spectrum of Hawking emission. This suggests an intrinsic fluctuation-driven mechanism leading to the quantum excitation of quasinormal modes on black hole spacetimes.

14.
Transl Vis Sci Technol ; 12(3): 9, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36917117

ABSTRACT

Purpose: Assessment of glaucomatous damage in animal models is facilitated by rapid and accurate quantification of retinal ganglion cell (RGC) axonal loss and morphologic change. However, manual assessment is extremely time- and labor-intensive. Here, we developed AxoNet 2.0, an automated deep learning (DL) tool that (i) counts normal-appearing RGC axons and (ii) quantifies their morphometry from light micrographs. Methods: A DL algorithm was trained to segment the axoplasm and myelin sheath of normal-appearing axons using manually-annotated rat optic nerve (ON) cross-sectional micrographs. Performance was quantified by various metrics (e.g., soft-Dice coefficient between predicted and ground-truth segmentations). We also quantified axon counts, axon density, and axon size distributions between hypertensive and control eyes and compared to literature reports. Results: AxoNet 2.0 performed very well when compared to manual annotations of rat ON (R2 = 0.92 for automated vs. manual counts, soft-Dice coefficient = 0.81 ± 0.02, mean absolute percentage error in axonal morphometric outcomes < 15%). AxoNet 2.0 also showed promise for generalization, performing well on other animal models (R2 = 0.97 between automated versus manual counts for mice and 0.98 for non-human primates). As expected, the algorithm detected decreased in axon density in hypertensive rat eyes (P ≪ 0.001) with preferential loss of large axons (P < 0.001). Conclusions: AxoNet 2.0 provides a fast and nonsubjective tool to quantify both RGC axon counts and morphological features, thus assisting with assessing axonal damage in animal models of glaucomatous optic neuropathy. Translational Relevance: This deep learning approach will increase rigor of basic science studies designed to investigate RGC axon protection and regeneration.


Subject(s)
Deep Learning , Glaucoma , Rats , Mice , Animals , Retinal Ganglion Cells/physiology , Cross-Sectional Studies , Disease Models, Animal , Axons/physiology , Glaucoma/diagnosis
15.
Am J Ophthalmol ; 252: 225-252, 2023 08.
Article in English | MEDLINE | ID: mdl-36906092

ABSTRACT

PURPOSE: To use optical coherence tomography (OCT) to characterize optic nerve head (ONH) peri-neural canal (pNC) scleral bowing (pNC-SB) and pNC choroidal thickness (pNC-CT) in 69 highly myopic and 138 healthy, age-matched, control eyes. DESIGN: Cross-sectional, case control study. METHODS: Within ONH radial B-scans, Bruch membrane (BM), BM opening (BMO), anterior scleral canal opening (ASCO), and pNC scleral surface were segmented. BMO and ASCO planes and centroids were determined. pNC-SB was characterized within 30° foveal-BMO (FoBMO) sectors by 2 parameters: pNC-SB-scleral slope (pNC-SB-SS), measured within 3 pNC segments (0-300, 300-700, and 700-1000 µm from the ASCO centroid); and pNC-SB-ASCO depth relative to a pNC scleral reference plane (pNC-SB-ASCOD). pNC-CT was calculated as the minimum distance between the scleral surface and BM at 3 pNC locations (300, 700, and 1100 µm from the ASCO). RESULTS: pNC-SB increased and pNC-CT decreased with axial length (P < .0133; P < .0001) and age (P < .0211; P < .0004) among all study eyes. pNC-SB was increased (P < .001) and pNC-CT was decreased (P < .0279) in the highly myopic compared to control eyes, and these differences were greatest in the inferior quadrant sectors (P < .0002). Sectoral pNC-SB was not related to sectoral pNC-CT in control eyes, but was inversely related to sectoral pNC-CT (P < .0001) in the highly myopic eyes. CONCLUSIONS: Our data suggest that pNC-SB is increased and pNC-CT is decreased in highly myopic eyes and that these phenomena are greatest in the inferior sectors. They support the hypothesis that sectors of maximum pNC-SB may predict sectors of greatest susceptibility to aging and glaucoma in future longitudinal studies of highly myopic eyes. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.


Subject(s)
Myopia , Optic Disk , Humans , Optic Disk/anatomy & histology , Tomography, Optical Coherence/methods , Cross-Sectional Studies , Neural Tube , Case-Control Studies , Bruch Membrane , Myopia/diagnosis
16.
Invest Ophthalmol Vis Sci ; 64(2): 17, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36790798

ABSTRACT

Purpose: The purpose of this study was to determine if there is asymmetry in retinal blood vessel (RBV) position and thickness between right and left eyes (R-L) and evaluate whether R-L asymmetry in RBV thickness is related to R-L asymmetry of retinal nerve fiber layer thickness (RNFLT). Methods: We analyzed peripapillary circle scan optical coherence tomography (OCT) examinations from healthy White subjects to measure RNFLT and RBV thickness and position relative to the fovea to Bruch's membrane opening axis, for all visible RBV. The R-L asymmetries of RNFLT and RBV thickness were computed for each A-scan. Four major vessels (superior temporal artery [STA] and superior temporal vein [STV], inferior temporal artery [ITA], and vein [ITV]) were identified using infrared images. Results: We included 219 individuals. The mean (standard deviation) number of RBV measured per eye was 15.0 (SD = 2.2). The position of the STV and STA was more superior in left eyes than in right eyes, by 2.4 degrees and 3.7 degrees, respectively (P < 0.01). There was no region with significant R-L asymmetry in RBV thickness. RNFLT was thicker in right eyes in the temporal superior region and thicker in left eyes in the superior and nasal superior regions, with the asymmetry profile resembling in a "W" shape. This shape was also present in post hoc analyses in two different populations. The R-L asymmetries of RBV and RNFLT at each A-scan were not significantly associated (P = 0.37). Conclusions: There is little R-L asymmetry in RBV, and it is not related to RNFLT asymmetry. This study suggests that R-L RNFLT asymmetry is due to factors other than RBV.


Subject(s)
Optic Disk , Humans , Retinal Ganglion Cells , Nerve Fibers , Retina , Tomography, Optical Coherence/methods , Retinal Vessels
17.
Environ Sci Pollut Res Int ; 30(3): 6612-6626, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36001266

ABSTRACT

Clays are often envisaged as an alternative to activated carbon for wastewater pollutant adsorption. However, conclusive results have only been obtained for clays heavily chemically modified. In this study, a greener approach is proposed to improve the retention capacity of clays. It consists in mixing clay (C) with eggshell (ES) and calcine, and then exposing to gliding arc plasma (ESC-800/PL). The resulting materials were characterized by nitrogen physisorption, FTIR, XRD, TGA/DTG, and point of zero charge analyses. The preparation gives porous platelet agglomerates resulting from the kaolinite-metakaolinite transition, thereby increasing their internal specific surface area and capacity to retain pollutants. This granular distribution is kept stable by partial pozzolanic reactions avoiding deagglomeration. The specific surface area and total pore volume increased respectively from 14 m2 g-1 and 0.049 cm3 g-1 to 89 m2 g-1 and 0.061 cm3 g-1 leading to an enhanced removal efficiency of Fast Green and Orange G dyes from polluted water. The maximum adsorption capacity occurred at 298 K attaining values of 32.34 and 14.78 mg g-1 for OG and FG, respectively. The pH plays a crucial role in the maximum sorption of dyes, and the experimental data were successfully adjusted to pseudo-first-order kinetic and Liu isotherm model.


Subject(s)
Wastewater , Water Pollutants, Chemical , Clay/chemistry , Porosity , Kaolin , Coloring Agents , Adsorption , Kinetics , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration
18.
Am J Ophthalmol Case Rep ; 28: 101733, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36345413

ABSTRACT

Purpose: Glaucoma is associated with structural changes of the optic nerve head such as deformation, lamina cribosa defects, prelaminar schisis, and peripapillary retinal schisis. We describe optic nerve cavitations that were detected by routine spectral domain optical coherence tomography (OCT). Observations: OCT imaging showed cavitations in 5 eyes of 4 patients with an initial diagnosis of glaucoma or glaucoma suspect. The cavitations were seen as hyporeflective spaces that are sharply delineated from surrounding tissue. They were centered inferonasally, anterior to the lamina cribosa, and at least partially within the Bruch's membrane opening (BMO). They extended from 3 to 6 clock hours. Conclusion: AND IMPORTANCE: We describe a new OCT finding in patients with a diagnosis of glaucoma and glaucoma suspect. While previous reports describe cavitations in the choroid in patients with pathological myopia, our patients had minimal refractive error and the cavitations were located within the optic nerve. We will examine these patients over time to determine the impact of this finding on longitudinal changes in structure and function.

19.
Invest Ophthalmol Vis Sci ; 63(11): 9, 2022 10 03.
Article in English | MEDLINE | ID: mdl-36239974

ABSTRACT

Purpose: The purpose of this study was to test if optic nerve head (ONH) myelin basic protein (MBP), 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), glial fibrillary acidic protein (GFAP), and ionized calcium binding adaptor molecule 1 (Iba1) proteins are altered in non-human primate (NHP) early/moderate experimental glaucoma (EG). Methods: Following paraformaldehyde perfusion, control and EG eye ONH tissues from four NHPs were paraffin embedded and serially (5 µm) vertically sectioned. Anti-MBP, CNPase, GFAP, Iba1, and nuclear dye-stained sections were imaged using sub-saturating light intensities. Whole-section images were segmented creating anatomically consistent laminar (L) and retrolaminar (RL) regions/sub-regions. EG versus control eye intensity/pixel-cluster density data within L and two RL regions (RL1 [1-250 µm]/RL2 [251-500 µm] from L) were compared using random effects models within the statistical program "R." Results: EG eye retinal nerve fiber loss ranged from 0% to 20%. EG eyes' MBP and CNPase intensity were decreased within the RL1 (MBP = 31.4%, P < 0.001; CNPase =62.3%, P < 0.001) and RL2 (MBP = 19.6%, P < 0.001; CNPase = 56.1%, P = 0.0004) regions. EG eye GFAP intensity was decreased in the L (41.6%, P < 0.001) and RL regions (26.7% for RL1, and 28.4% for RL2, both P < 0.001). Iba1+ and NucBlue pixel-cluster density were increased in the laminar (28.2%, P = 0.03 and 16.6%, P = 0.008) and both RL regions (RL1 = 37.3%, P = 0.01 and 23.7%, P = 0.0002; RL2 = 53.7%, P = 0.002 and 33.2%, P < 0.001). Conclusions: Retrolaminar myelin disruption occurs early in NHP EG and may be accompanied by laminar and retrolaminar decreases in astrocyte process labeling and increases in microglial/ macrophage density. The mechanistic and therapeutic implications of these findings warrant further study.


Subject(s)
Glaucoma , Optic Disk , Animals , 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase , Calcium , Disease Models, Animal , Glial Fibrillary Acidic Protein/metabolism , Myelin Basic Protein , Myelin Sheath/metabolism , Optic Disk/metabolism , Primates/metabolism , Calcium-Binding Proteins/metabolism , Microfilament Proteins/metabolism
20.
Phys Rev Lett ; 129(10): 103601, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36112465

ABSTRACT

Characterizing elementary excitations in quantum fluids is essential to study their collective effects. We present an original angle-resolved coherent probe spectroscopy technique to study the dispersion of these excitation modes in a fluid of polaritons under resonant pumping. Thanks to the unprecedented spectral and spatial resolution, we observe directly the low-energy phononic behavior and detect the negative-energy modes, i.e., the ghost branch, of the dispersion relation. In addition, we reveal narrow spectral features precursory of dynamical instabilities due to the intrinsic out-of-equilibrium nature of the system. This technique provides the missing tool for the quantitative study of quantum hydrodynamics in polariton fluids.

SELECTION OF CITATIONS
SEARCH DETAIL
...