Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21258241

ABSTRACT

BackgroundMultiorgan tropism of SARS-CoV-2 has previously been shown for several major organs. MethodsWe have comprehensively analyzed 25 different formalin-fixed paraffin-embedded (FFPE) tissues/organs from autopsies of fatal COVID-19 cases (n=8), using detailed histopathological assessment, detection of SARS-CoV-2 RNA using polymerase chain reaction and RNA in situ hybridization, viral protein using immunohistochemistry, and virus particles using transmission electron microscopy. Finally, we confirmed these findings in an independent external autopsy cohort (n=9). FindingsSARS-CoV-2 RNA was mainly localized in epithelial cells, endothelial and mesenchymal cells across all organs. Next to lung, trachea, kidney, heart, or liver, viral RNA was also found in tonsils, salivary glands, oropharynx, thyroid, adrenal gland, testicles, prostate, ovaries, small bowel, lymph nodes, skin and skeletal muscle. Viral RNA was predominantly found in cells expressing ACE2, TMPRSS2, or both. The SARS-CoV-2 replicating RNA was also detected in these organs. Immunohistochemistry and electron microscopy were not suitable for reliable and specific SARS-CoV-2 detection in autopsies. The findings were validated using in situ hybridization on external COVID-19 autopsy samples. Finally, apart from the lung, correlation of virus detection and histopathological assessment did not reveal any specific alterations that could be attributed to SARS-CoV-2. InterpretationSARS-CoV-2 could be observed in virtually all organs, colocalizing with ACE2 and TMPRSS2 mainly in epithelial but also in mesenchymal and endothelial cells, and viral replication was found across all organ systems. Apart from the respiratory tract, no specific (histo-)morphologic alterations could be assigned to the SARS-CoV-2 infection. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSSARS-CoV-2 has been shown to infect the respiratory tract and affect several other major organs. However, on a cellular level, the localization of SARS-CoV-2 and its targets ACE2 and TMPRSS2 have not been described comprehensively. Added value of this studyWe have analyzed tissue SARS-CoV-2 RNA using RT-PCR and visualized its localization together with ACE2 and TMPRSS2 using in situ hybridization (ISH) in 25 different autopsy tissues. SARS-CoV-2 sense and antisense RNA were detected in 16 tissues/organs, mainly in epithelial cells and, to a lesser extent, in endothelial or stromal cells. Detection of viral protein using immunohistochemistry or viral particles using transmission electron microscopy did not yield specific results. Interestingly, apart from the respiratory tract and specifically the lungs, we have not found a specific pathology that would be associated with extrapulmonary viral spread. Implications of all the available evidenceWe provide a recommendation on using these methods in autopsy diagnostics for SARS-CoV-2. Our data extend the current hypothesis of severe COVID-19 being multisystemic diseases. Our data also provide clear evidence of infection and replication of SARS-CoV-2 in the endothelial cell across all organs, extending the hypothesis on the (micro)vascular involvement in COVID-19.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21250082

ABSTRACT

Virus detection methods are important to cope with the SARS-CoV-2 pandemics. Apart from the lung, SARS-CoV-2 was detected in multiple organs in severe cases. Less is known on organ tropism in patients developing mild or no symptoms, and some of such patients might be missed in symptom-indicated swab testing. Here we tested and validated several approaches and selected the most reliable RT-PCR protocol for the detection of SARS-CoV-2 RNA in patients routine diagnostic formalin-fixed and paraffin-embedded (FFPE) specimens available in pathology, to assess a) organ tropism in samples from COVID-19-positive patients, b) unrecognized cases in selected tissues from negative or not-tested patients during a pandemic peak, and c) retrospectively, pre-pandemic lung samples. We identified SARS-CoV-2 RNA in four samples from confirmed COVID-19 patients, in two gastric biopsies, one colon resection, and one pleural effusion specimen, while all other specimens, particularly from patients with mild COVID-19 disease course, were negative. In the pandemic peak cohort, we identified one previously unrecognized COVID-19 case in tonsillectomy samples. All pre-pandemic lung samples were negative. In conclusion, SARS-CoV-2 RNA detection in FFPE pathology specimens can potentially improve surveillance of COVID-19, allow retrospective studies, and advance our understanding of SARS-CoV-2 organ tropism and effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...