Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38732390

ABSTRACT

Phenotyping yam (Dioscorea spp.) germplasm for resistance to parasitic nematodes is hampered by the lack of an efficient screening method. In this study, we developed a new method using rooted yam vine cuttings and yam plantlets generated from semi-autotrophic hydroponics (SAHs) propagation for phenotyping yam genotypes for nematode resistance. The method was evaluated using 26 genotypes of D. rotundata for their reaction to Scutellonema bradys and four root-knot nematode species, Meloidogyne arenaria, M. enterolobii, M. incognita, and M. javanica. Yam plantlets established in nursery bags filled with steam-sterilized soil were used for screening against single nematode species. Plants were inoculated four weeks after planting and assessed for nematode damage eight weeks later. A severity rating scale was used to classify genotypes as resistant, tolerant, or susceptible determine based on the nematode feeding damage on tubers and the rate of nematode multiplication in the roots of inoculated plants. The results demonstrated putative resistance and tolerance against S. bradys in 58% of the genotypes and 88%, 65%, 65%, and 58% against M. arenaria, M. javanica, M. incognita, and M. enterolobii, respectively. The method is rapid, flexible, and seasonally independent, permitting year-round screening under controlled conditions. This method increases the throughput and speed of phenotyping and improves the selection process.

2.
Annu Rev Phytopathol ; 56: 381-403, 2018 08 25.
Article in English | MEDLINE | ID: mdl-29958072

ABSTRACT

Sub-Saharan Africa (SSA) is a region beset with challenges, not least its ability to feed itself. Low agricultural productivity, exploding populations, and escalating urbanization have led to declining per capita food availability. In order to reverse this trend, crop production systems must intensify, which brings with it an elevated threat from pests and diseases, including plant-parasitic nematodes. A holistic systems approach to pest management recognizes disciplinary integration. However, a critical under-representation of nematology expertise is a pivotal shortcoming, especially given the magnitude of the threat nematodes pose under more intensified systems. With more volatile climates, efficient use of water by healthy root systems is especially crucial. Within SSA, smallholder farming systems dominate the agricultural landscape, where a limited understanding of nematode problems prevails. This review provides a synopsis of current nematode challenges facing SSA and presents the opportunities to overcome current shortcomings, including a means to increase nematology capacity.


Subject(s)
Crop Production , Crops, Agricultural/parasitology , Food Supply , Nematoda/physiology , Plant Diseases/prevention & control , Africa South of the Sahara , Animals , Plant Diseases/parasitology
3.
Pest Manag Sci ; 66(4): 385-9, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19946857

ABSTRACT

BACKGROUND: The use of thermotherapy or hot water treatment (HWT) is recommended for the management of plant-parasitic nematodes and other pathogens for a range of planting material, especially vegetatively propagated crops including yams, Dioscorea spp. The sprouting (germination) and consequent viability of yam following HWT, however, appear to be influenced by the post-treatment method of planting (whole or cut setts) and cultivar. The present study was established to evaluate the sensitivity of the most popular yam cultivars in Benin and Nigeria, West Africa, to HWT at 50-53 degrees C for 20 min. RESULTS: Sprouting of both setts and whole tubers of most cultivars was affected by HWT. Across experiments, 47% of HWT material, compared with 61% of non-HWT material, sprouted over 8 weeks. When cut into setts, 41% of HWT or untreated tubers sprouted, compared with 72% of whole tubers. Whole, untreated tubers had highest sprouting rates (84%), and setts following HWT had the lowest (38%). Yam planting material was also not completely free of parasitic nematodes following HWT. The reaction to HWT or cutting was highly cultivar specific. CONCLUSION: Yam cultivars vary in their sensitivity to hot water therapy. Care is therefore advised in selecting yam cultivars for HWT, especially when using cut setts.


Subject(s)
Dioscorea/physiology , Dioscorea/parasitology , Hot Temperature , Plant Diseases/parasitology , Plant Diseases/therapy , Plant Tubers/physiology , Plant Tubers/parasitology , Water , Germination , Plant Diseases/prevention & control , Species Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...