Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Blood ; 143(21): 2152-2165, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38437725

ABSTRACT

ABSTRACT: Effective T-cell responses not only require the engagement of T-cell receptors (TCRs; "signal 1"), but also the availability of costimulatory signals ("signal 2"). T-cell bispecific antibodies (TCBs) deliver a robust signal 1 by engaging the TCR signaling component CD3ε, while simultaneously binding to tumor antigens. The CD20-TCB glofitamab redirects T cells to CD20-expressing malignant B cells. Although glofitamab exhibits strong single-agent efficacy, adding costimulatory signaling may enhance the depth and durability of T-cell-mediated tumor cell killing. We developed a bispecific CD19-targeted CD28 agonist (CD19-CD28), RG6333, to enhance the efficacy of glofitamab and similar TCBs by delivering signal 2 to tumor-infiltrating T cells. CD19-CD28 distinguishes itself from the superagonistic antibody TGN1412, because its activity requires the simultaneous presence of a TCR signal and CD19 target binding. This is achieved through its engineered format incorporating a mutated Fc region with abolished FcγR and C1q binding, CD28 monovalency, and a moderate CD28 binding affinity. In combination with glofitamab, CD19-CD28 strongly increased T-cell effector functions in ex vivo assays using peripheral blood mononuclear cells and spleen samples derived from patients with lymphoma and enhanced glofitamab-mediated regression of aggressive lymphomas in humanized mice. Notably, the triple combination of glofitamab with CD19-CD28 with the costimulatory 4-1BB agonist, CD19-4-1BBL, offered substantially improved long-term tumor control over glofitamab monotherapy and respective duplet combinations. Our findings highlight CD19-CD28 as a safe and highly efficacious off-the-shelf combination partner for glofitamab, similar TCBs, and other costimulatory agonists. CD19-CD28 is currently in a phase 1 clinical trial in combination with glofitamab. This trial was registered at www.clinicaltrials.gov as #NCT05219513.


Subject(s)
Antibodies, Bispecific , Antigens, CD19 , Antigens, CD20 , CD28 Antigens , Immunotherapy , Humans , CD28 Antigens/immunology , CD28 Antigens/agonists , Animals , Mice , Antibodies, Bispecific/pharmacology , Antigens, CD19/immunology , Antigens, CD20/immunology , Immunotherapy/methods , T-Lymphocytes/immunology , Xenograft Model Antitumor Assays , Mice, Inbred NOD
2.
CPT Pharmacometrics Syst Pharmacol ; 12(11): 1804-1818, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37964753

ABSTRACT

FAP-4-1BBL is a bispecific antibody exerting 4-1BB-associated T-cell activation only while simultaneously bound to the fibroblast activation protein (FAP) receptor, expressed on the surface of cancer-associated fibroblasts. The trimeric complex formed when FAP-4-1BBL is simultaneously bound to FAP and 4-1BB represents a promising mechanism to achieve tumor-specific 4-1BB stimulation. We integrated in vitro data with mathematical modeling to characterize the pharmacology of FAP-4-1BBL as a function of trimeric complex formation when combined with the T-cell engager cibisatamab. This relationship was used to prospectively predict a range of clinical doses where trimeric complex formation is expected to be at its maximum. Depending on the dosing schedule and FAP-4-1BBL plasma: tumor distribution, doses between 2 and 145 mg could lead to maximum trimeric complex formation in the clinic. Due to the expected variability in both pharmacokinetic and FAP expression in the patient population, we predict that detecting a clear dose-response relationship would remain difficult without a large number of patients per dose level, highlighting that mathematical modeling techniques based on in vitro data could aid dose selection.


Subject(s)
Antibodies, Bispecific , Neoplasms , Humans , Antibodies, Bispecific/pharmacology , Neoplasms/drug therapy , T-Lymphocytes/metabolism
3.
J Clin Invest ; 133(13)2023 07 03.
Article in English | MEDLINE | ID: mdl-37219943

ABSTRACT

Recent transcriptomic-based analysis of diffuse large B cell lymphoma (DLBCL) has highlighted the clinical relevance of LN fibroblast and tumor-infiltrating lymphocyte (TIL) signatures within the tumor microenvironment (TME). However, the immunomodulatory role of fibroblasts in lymphoma remains unclear. Here, by studying human and mouse DLBCL-LNs, we identified the presence of an aberrantly remodeled fibroblastic reticular cell (FRC) network expressing elevated fibroblast-activated protein (FAP). RNA-Seq analyses revealed that exposure to DLBCL reprogrammed key immunoregulatory pathways in FRCs, including a switch from homeostatic to inflammatory chemokine expression and elevated antigen-presentation molecules. Functional assays showed that DLBCL-activated FRCs (DLBCL-FRCs) hindered optimal TIL and chimeric antigen receptor (CAR) T cell migration. Moreover, DLBCL-FRCs inhibited CD8+ TIL cytotoxicity in an antigen-specific manner. Notably, the interrogation of patient LNs with imaging mass cytometry identified distinct environments differing in their CD8+ TIL-FRC composition and spatial organization that associated with survival outcomes. We further demonstrated the potential to target inhibitory FRCs to rejuvenate interacting TILs. Cotreating organotypic cultures with FAP-targeted immunostimulatory drugs and a bispecific antibody (glofitamab) augmented antilymphoma TIL cytotoxicity. Our study reveals an immunosuppressive role of FRCs in DLBCL, with implications for immune evasion, disease pathogenesis, and optimizing immunotherapy for patients.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , T-Lymphocytes , Humans , Mice , Animals , Lymphoma, Large B-Cell, Diffuse/pathology , Fibroblasts/metabolism , Lymph Nodes , Tumor Microenvironment
4.
MAbs ; 15(1): 2167189, 2023.
Article in English | MEDLINE | ID: mdl-36727218

ABSTRACT

The clinical development of 4-1BB agonists for cancer immunotherapy has raised substantial interest during the past decade. The first generation of 4-1BB agonistic antibodies entering the clinic, urelumab (BMS-663513) and utomilumab (PF-05082566), failed due to (liver) toxicity or lack of efficacy, respectively. The two antibodies display differences in the affinity and the 4-1BB receptor epitope recognition, as well as the isotype, which determines the Fc-gamma-receptor (FcγR) crosslinking activity. Based on this experience a very diverse landscape of second-generation 4-1BB agonists addressing the liabilities of first-generation agonists has recently been developed, with many entering clinical Phase 1 and 2 studies. This review provides an overview focusing on differences and their scientific rationale, as well as challenges foreseen during the clinical development of these molecules.


Subject(s)
Neoplasms , Tumor Necrosis Factor Receptor Superfamily, Member 9 , Humans , Receptors, IgG , Epitopes , Neoplasms/drug therapy , Immunotherapy
5.
J Immunother Cancer ; 8(2)2020 07.
Article in English | MEDLINE | ID: mdl-32616554

ABSTRACT

BACKGROUND: The costimulatory receptor 4-1BB (CD137, TNFRSF9) plays an important role in sustaining effective T cell immune responses and is investigated as target for cancer therapy. Systemic 4-1BB directed therapies elicit toxicity or low efficacy, which significantly hampered advancement of 4-1BB-based immunotherapy. Therefore, targeted delivery of 4-1BB agonist to the tumor side is needed for eliciting antitumor efficacy while avoiding systemic toxicity. METHODS: We analyzed the immunostimulatory properties of a fibroblast activation protein (FAP)-targeted 4-1BB agonist (FAP-4-1BBL) by assessing tumor-infiltrating lymphocytes' (TIL) activity from patients with non-small cell lung cancer and epithelial ovarian cancer. RESULTS: Combination treatment with FAP-4-1BBL and T cell receptor stimulation by either anti-CD3 or T cell bispecific antibodies significantly enhanced TIL activation and effector functions, including T cell proliferation, secretion of proinflammatory cytokines and cytotoxicity. Notably, costimulation with FAP-4-1BBL led to de novo secretion of interleukin (IL)-13. This was associated with cytokine-mediated tumor cell apoptosis, which was partially dependent on IL-13 alpha 1/2 receptors and STAT6 phosphorylation. CONCLUSIONS: Our study provides mechanistic insights into T cell stimulation induced by FAP-4-1BBL in primary human tumors and supports the investigation of FAP-4-1BBL compound in early clinical trials.


Subject(s)
4-1BB Ligand/metabolism , Fibroblasts/immunology , Immunotherapy/methods , Neoplasms/genetics , Receptors, Antigen, T-Cell/metabolism , Aged , Humans , Neoplasms/pathology , Transfection
6.
Cancer Res ; 80(13): 2903-2913, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32409308

ABSTRACT

CD8-expressing T cells are the main effector cells in cancer immunotherapy. Treatment-induced changes in intratumoral CD8+ T cells may represent a biomarker to identify patients responding to cancer immunotherapy. Here, we have used a 89Zr-radiolabeled human CD8-specific minibody (89Zr-Df-IAB22M2C) to monitor CD8+ T-cell tumor infiltrates by PET. The ability of this tracer to quantify CD8+ T-cell tumor infiltrates was evaluated in preclinical studies following single-agent treatment with FOLR1-T-cell bispecific (TCB) antibody and combination therapy of CEA-TCB (RG7802) and CEA-targeted 4-1BB agonist CEA-4-1BBL. In vitro cytotoxicity assays with peripheral blood mononuclear cells and CEA-expressing MKN-45 gastric or FOLR1-expressing HeLa cervical cancer cells confirmed noninterference of the anti-CD8-PET-tracer with the mode of action of CEA-TCB/CEA-4-1BBL and FOLR1-TCB at relevant doses. In vivo, the extent of tumor regression induced by combination treatment with CEA-TCB/CEA-4-1BBL in MKN-45 tumor-bearing humanized mice correlated with intratumoral CD8+ T-cell infiltration. This was detectable by 89Zr-IAB22M2C-PET and γ-counting. Similarly, single-agent treatment with FOLR1-TCB induced strong CD8+ T-cell infiltration in HeLa tumors, where 89Zr-Df-IAB22M2C again was able to detect CD8 tumor infiltrates. CD8-IHC confirmed the PET imaging results. Taken together, the anti-CD8-minibody 89Zr-Df-IAB22M2C revealed a high sensitivity for the detection of intratumoral CD8+ T-cell infiltrates upon either single or combination treatment with TCB antibody-based fusion proteins. These results provide further evidence that the anti-CD8 tracer, which is currently in clinical phase II, is a promising monitoring tool for intratumoral CD8+ T cells in patients treated with cancer immunotherapy. SIGNIFICANCE: Monitoring the pharmacodynamic activity of cancer immunotherapy with novel molecular imaging tools such as 89Zr-Df-IAB22M2C for PET imaging is of prime importance to identify patients responding early to cancer immunotherapy.


Subject(s)
Antibodies, Bispecific/pharmacology , CD8-Positive T-Lymphocytes/immunology , Immunotherapy/methods , Molecular Imaging/methods , Positron-Emission Tomography/methods , Uterine Cervical Neoplasms/immunology , Zirconium/metabolism , Animals , Antibodies, Bispecific/immunology , Carcinoembryonic Antigen , Female , Folate Receptor 1/immunology , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Radiopharmaceuticals/metabolism , Tumor Cells, Cultured , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/therapy
7.
Sci Transl Med ; 11(496)2019 06 12.
Article in English | MEDLINE | ID: mdl-31189721

ABSTRACT

Endogenous costimulatory molecules on T cells such as 4-1BB (CD137) can be leveraged for cancer immunotherapy. Systemic administration of agonistic anti-4-1BB antibodies, although effective preclinically, has not advanced to phase 3 trials because they have been hampered by both dependency on Fcγ receptor-mediated hyperclustering and hepatotoxicity. To overcome these issues, we engineered proteins simultaneously targeting 4-1BB and a tumor stroma or tumor antigen: FAP-4-1BBL (RG7826) and CD19-4-1BBL. In the presence of a T cell receptor signal, they provide potent T cell costimulation strictly dependent on tumor antigen-mediated hyperclustering without systemic activation by FcγR binding. We could show targeting of FAP-4-1BBL to FAP-expressing tumor stroma and lymph nodes in a colorectal cancer-bearing rhesus monkey. Combination of FAP-4-1BBL with tumor antigen-targeted T cell bispecific (TCB) molecules in human tumor samples led to increased IFN-γ and granzyme B secretion. Further, combination of FAP- or CD19-4-1BBL with CEA-TCB (RG7802) or CD20-TCB (RG6026), respectively, resulted in tumor remission in mouse models, accompanied by intratumoral accumulation of activated effector CD8+ T cells. FAP- and CD19-4-1BBL thus represent an off-the-shelf combination immunotherapy without requiring genetic modification of effector cells for the treatment of solid and hematological malignancies.


Subject(s)
Antibodies, Bispecific/metabolism , CD8-Positive T-Lymphocytes/metabolism , Antibodies, Bispecific/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line , Cell Proliferation/physiology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/metabolism , Humans , Immunotherapy , Lymph Nodes/immunology , Lymph Nodes/metabolism , Neoplasms/immunology , Neoplasms/therapy
8.
Blood ; 130(3): 297-309, 2017 07 20.
Article in English | MEDLINE | ID: mdl-28495792

ABSTRACT

The interaction of the tumor necrosis factor receptor (TNFR) CD27 with its ligand CD70 is an emerging target to treat cancer. CD27 signaling provides costimulatory signals to cytotoxic T cells but also increases the frequency of regulatory T cells. Similar to other TNFR ligands, CD70 has been shown to initiate intracellular signaling pathways (CD70 reverse signaling). CD27 is expressed on a majority of B-cell non-Hodgkin lymphoma, but its role in the immune control of lymphoma and leukemia is unknown. We therefore generated a cytoplasmic deletion mutant of CD27 (CD27-trunc) to study the role of CD70 reverse signaling in the immunosurveillance of B-cell malignancies in vivo. Expression of CD27-trunc on malignant cells increased the number of tumor-infiltrating interferon γ-producing natural killer (NK) cells. In contrast, the antitumoral T-cell response remained largely unchanged. CD70 reverse signaling in NK cells was mediated via the AKT signaling pathway and increased NK cell survival and effector function. The improved immune control by activated NK cells prolonged survival of CD27-trunc-expressing lymphoma-bearing mice. Finally, CD70 reverse signaling enhanced survival and effector function of human NK cells in a B-cell acute lymphoblastic leukemia xenotransplants model. Therefore, CD70 reverse signaling in NK cells contributes to the immune control of CD27-expressing B-cell lymphoma and leukemia.


Subject(s)
B-Lymphocytes/immunology , CD27 Ligand/immunology , Cytotoxicity, Immunologic , Killer Cells, Natural/immunology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology , Animals , B-Lymphocytes/pathology , CD27 Ligand/genetics , Gene Expression , Humans , Immunologic Surveillance , Interferon-gamma/genetics , Interferon-gamma/immunology , Killer Cells, Natural/pathology , Ligands , Lymphocyte Activation , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/pathology , Mice , Mice, Knockout , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Signal Transduction , Survival Analysis , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/pathology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Transplantation, Heterologous , Tumor Necrosis Factor Receptor Superfamily, Member 7/deficiency , Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics
9.
Cancer Res ; 72(14): 3664-76, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22628427

ABSTRACT

Signaling of the TNF receptor superfamily member CD27 activates costimulatory pathways to elicit T- and B-cell responses. CD27 signaling is regulated by the expression of its ligand CD70 on subsets of dendritic cells and lymphocytes. Here, we analyzed the role of the CD27-CD70 interaction in the immunologic control of solid tumors in Cd27-deficient mice. In tumor-bearing wild-type mice, the CD27-CD70 interaction increased the frequency of regulatory T cells (Tregs), reduced tumor-specific T-cell responses, increased angiogenesis, and promoted tumor growth. CD27 signaling reduced apoptosis of Tregs in vivo and induced CD4(+) effector T cells (Teffs) to produce interleukin-2, a key survival factor for Tregs. Consequently, the frequency of Tregs and growth of solid tumors were reduced in Cd27-deficient mice or in wild-type mice treated with monoclonal antibody to block CD27 signaling. Our findings, therefore, provide a novel mechanism by which the adaptive immune system enhances tumor growth and may offer an attractive strategy to treat solid tumors.


Subject(s)
Neoplasms, Experimental/immunology , T-Lymphocytes, Regulatory/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism , Animals , CD27 Ligand/metabolism , CD4-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Cell Proliferation , Dendritic Cells/metabolism , Interleukin-2/metabolism , Lymphocytes, Tumor-Infiltrating , Mice , Mice, Inbred Strains , Neoplasms, Experimental/blood supply , Neoplasms, Experimental/metabolism , Signal Transduction
10.
PLoS One ; 6(9): e24772, 2011.
Article in English | MEDLINE | ID: mdl-21966366

ABSTRACT

Immune responses have the important function of host defense and protection against pathogens. However, the immune response also causes inflammation and host tissue injury, termed immunopathology. For example, hepatitis B and C virus infection in humans cause immunopathological sequel with destruction of liver cells by the host's own immune response. Similarly, after infection with lymphocytic choriomeningitis virus (LCMV) in mice, the adaptive immune response causes liver cell damage, choriomeningitis and destruction of lymphoid organ architecture. The immunopathological sequel during LCMV infection has been attributed to cytotoxic CD8(+) T cells. However, we now show that during LCMV infection CD4(+) T cells selectively induced the destruction of splenic marginal zone and caused liver cell damage with elevated serum alanin-transferase (ALT) levels. The destruction of the splenic marginal zone by CD4(+) T cells included the reduction of marginal zone B cells, marginal zone macrophages and marginal zone metallophilic macrophages. Functionally, this resulted in an impaired production of neutralizing antibodies against LCMV. Furthermore, CD4(+) T cells reduced B cells with an IgM(high)IgD(low) phenotype (transitional stage 1 and 2, marginal zone B cells), whereas other B cell subtypes such as follicular type 1 and 2 and germinal center/memory B cells were not affected. Adoptive transfer of CD4(+) T cells lacking different important effector cytokines and cytolytic pathways such as IFNγ, TNFα, perforin and Fas-FasL interaction did reveal that these cytolytic pathways are redundant in the induction of immunopathological sequel in spleen. In conclusion, our results define an important role of CD4(+) T cells in the induction of immunopathology in liver and spleen. This includes the CD4(+) T cell mediated destruction of the splenic marginal zone with consecutively impaired protective neutralizing antibody responses.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Hepatitis, Viral, Animal/immunology , Lymphoid Tissue/immunology , Spleen/immunology , Adoptive Transfer , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Chemokines/genetics , Chemokines/immunology , Chemokines/metabolism , Fas Ligand Protein/deficiency , Fas Ligand Protein/genetics , Fas Ligand Protein/immunology , Flow Cytometry , Hepatitis, Viral, Animal/metabolism , Hepatitis, Viral, Animal/virology , Interferon-gamma/deficiency , Interferon-gamma/genetics , Interferon-gamma/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/metabolism , Lymphocytic choriomeningitis virus/immunology , Lymphoid Tissue/metabolism , Lymphoid Tissue/virology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Fluorescence , Perforin/deficiency , Perforin/genetics , Perforin/immunology , Reverse Transcriptase Polymerase Chain Reaction , Spleen/metabolism , Spleen/virology , Time Factors , Tumor Necrosis Factor-alpha/deficiency , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
11.
Eur J Immunol ; 40(10): 2720-30, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20836157

ABSTRACT

Chronic myelogenous leukemia (CML) is a malignant myeloproliferative disease of hematopoietic stem cells. The disease progresses after several years from an initial chronic phase to a blast phase. Leukemia-specific T cells are regularly detected in CML patients and may be involved in the immunological control of the disease. Here, we analyzed the role of leukemia-specific CD8(+) T cells in CML disease control and the mechanism that maintains CD8(+) T-cell immunosurveillance in a retroviral-induced murine CML model. To study antigen-specific immune responses, the glycoprotein of the lymphocytic choriomeningitis virus was used as model leukemia antigen. Leukemia-specific CTL activity was detectable in vivo in CML mice and depletion of CD8(+) T cells rapidly led to disease progression. CML-specific CTL were characterized by the expression of the IL-7 receptor α-chain. In addition, leukemia cells produced IL-7 that was crucial for the maintenance of leukemia-specific CTL and for disease control. Therefore, CML cells maintain the specific CD8(+) T-cell-mediated immune control by IL-7 secretion. This results in prolonged control of disease and probably contributes to the characteristic chronic phase of the disease.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Interleukin-7/immunology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology , Receptors, Interleukin-7/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Disease Models, Animal , Flow Cytometry , Interleukin-7/genetics , Kaplan-Meier Estimate , Mice , Mice, Inbred C57BL , Mice, Transgenic , RNA/chemistry , RNA/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/immunology
12.
Nat Med ; 16(3): 339-45, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20139992

ABSTRACT

Lymphocytic choriomeningitis virus (LCMV) exhibits natural tropism for dendritic cells and represents the prototypic infection that elicits protective CD8(+) T cell (cytotoxic T lymphocyte (CTL)) immunity. Here we have harnessed the immunobiology of this arenavirus for vaccine delivery. By using producer cells constitutively synthesizing the viral glycoprotein (GP), it was possible to replace the gene encoding LCMV GP with vaccine antigens to create replication-defective vaccine vectors. These rLCMV vaccines elicited CTL responses that were equivalent to or greater than those elicited by recombinant adenovirus 5 or recombinant vaccinia virus in their magnitude and cytokine profiles, and they exhibited more effective protection in several models. In contrast to recombinant adenovirus 5, rLCMV failed to elicit vector-specific antibody immunity, which facilitated re-administration of the same vector for booster vaccination. In addition, rLCMV elicited T helper type 1 CD4+ T cell responses and protective neutralizing antibodies to vaccine antigens. These features, together with low seroprevalence in humans, suggest that rLCMV may show utility as a vaccine platform against infectious diseases and cancer.


Subject(s)
Arenaviridae Infections/prevention & control , CD8-Positive T-Lymphocytes/immunology , Genetic Vectors/immunology , Lymphocytic choriomeningitis virus/immunology , Viral Vaccines/immunology , Animals , Antibody Formation/immunology , Arenaviridae Infections/immunology , Dendritic Cells/immunology , Dendritic Cells/virology , Dose-Response Relationship, Immunologic , Genetic Vectors/genetics , Immunity, Cellular/immunology , Immunization, Secondary , Lymphocyte Activation/immunology , Lymphocytic choriomeningitis virus/genetics , Mice , Mice, Inbred C57BL/immunology , Mice, Transgenic/immunology , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viral Vaccines/genetics
13.
Blood ; 113(19): 4681-9, 2009 May 07.
Article in English | MEDLINE | ID: mdl-19252140

ABSTRACT

Chronic myelogenous leukemia (CML) is a malignant myeloproliferative disease arising from a hematopoietic stem cell expressing the BCR/ABL fusion protein. Leukemic and dendritic cells (DCs) develop from the same transformed hematopoietic progenitors. How BCR/ABL interferes with the immunoregulatory function of DCs in vivo is unknown. We analyzed the function of BCR/ABL-expressing DCs in a retroviral-induced murine CML model using the glycoprotein of lymphocytic choriomeningitis virus as a model leukemia antigen. BCR/ABL-expressing DCs were found in bone marrow, thymus, spleen, lymph nodes, and blood of CML mice. They were characterized by a low maturation status and induced only limited expansion of naive and memory cytotoxic T lymphocytes (CTLs). In addition, immunization with in vitro-generated BCR/ABL-expressing DCs induced lower frequencies of specific CTLs than immunization with control DCs. BCR/ABL-expressing DCs preferentially homed to the thymus, whereas only few BCR/ABL-expressing DCs reached the spleen. Our results indicate that BCR/ABL-expressing DCs do not efficiently induce CML-specific T-cell responses resulting from low DC maturation and impaired homing to secondary lymphoid organs. In addition, BCR/ABL-expressing DCs in the thymus may contribute to CML-specific tolerance induction of specific CTLs.


Subject(s)
Dendritic Cells/physiology , Fusion Proteins, bcr-abl/metabolism , Glycoproteins/physiology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation , Disease Models, Animal , Flow Cytometry , Immunization , Immunologic Memory/immunology , Lymphocytic choriomeningitis virus/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Retroviridae/genetics , Tumor Cells, Cultured , Whole-Body Irradiation
14.
Eur J Immunol ; 38(7): 1847-56, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18506879

ABSTRACT

CD4+ T cell help during the priming of CD8+ T lymphocytes imprints the capacity for optimal secondary expansion upon re-encounter with antigen. Helped memory CD8+ T cells rapidly expand in response to a secondary antigen exposure, even in the absence of T cell help and, are most efficient in protection against a re-infection. In contrast, helpless memory CTL can mediate effector function, but secondary expansion is reduced. How CD4+ T cells instruct CD8+ memory T cells during priming to undergo efficient secondary expansion has not been resolved in detail. Here, we show that memory CTL after infection with lymphocytic choriomeningitis virus are CD27(high) whereas memory CTL primed in the absence of CD4+ T cell have a reduced expression of CD27. Helpless memory CTL produced low amounts of IL-2 and did not efficiently expand after restimulation with peptide in vitro. Blocking experiments with monoclonal antibodies and the use of CD27(-/-) memory CTL revealed that CD27 ligation during restimulation increased autocrine IL-2 production and secondary expansion. Therefore, regulating CD27 expression on memory CTL is a novel mechanism how CD4+ T cells control CTL memory.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , Interleukin-2/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism , Animals , Arenaviridae Infections/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Interleukin-2/immunology , Lymphocytic choriomeningitis virus/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
15.
Plant Cell ; 17(12): 3409-21, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16284312

ABSTRACT

Photosynthetic organisms respond to changes in ambient light by modulating the size and composition of their light-harvesting complexes, which in the case of the green alga Chlamydomonas reinhardtii consists of >15 members of a large extended family of chlorophyll binding subunits. How their expression is coordinated is unclear. Here, we describe the analysis of an insertion mutant, state transitions mutant3 (stm3), which we show has increased levels of LHCBM subunits associated with the light-harvesting antenna of photosystem II. The mutated nuclear gene in stm3 encodes the RNA binding protein NAB1 (for putative nucleic acid binding protein). In vitro and in vivo RNA binding and protein expression studies have confirmed that NAB1 differentially binds to LHCBM mRNA in a subpolysomal high molecular weight RNA-protein complex. Binding of NAB1 stabilizes LHCBM mRNA at the preinitiation level via sequestration and thereby represses translation. The specificity and affinity of binding are determined by an RNA sequence motif similar to that used by the Xenopus laevis translation repressor FRGY2, which is conserved to varying degrees in the LHCBM gene family. We conclude from our results that NAB1 plays an important role in controlling the expression of the light-harvesting antenna of photosystem II at the posttranscriptional level. The similarity of NAB1 and FRGY2 of Xenopus implies the existence of similar RNA-masking systems in animals and plants.


Subject(s)
Chlamydomonas reinhardtii/physiology , Light-Harvesting Protein Complexes/genetics , Plant Proteins/physiology , RNA-Binding Proteins/physiology , Amino Acid Sequence , Animals , Base Sequence , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Chlorophyll/metabolism , DNA, Complementary , Electrophoresis, Polyacrylamide Gel , Fluorescence , Gene Expression , Immunoprecipitation , Microscopy, Electron , Molecular Sequence Data , Plant Proteins/chemistry , RNA, Messenger/genetics , RNA-Binding Proteins/chemistry , Sequence Homology, Amino Acid , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...