Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Rep ; 23(4): e53354, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35166439

ABSTRACT

Protein ubiquitination is a dynamic and reversible post-translational modification that controls diverse cellular processes in eukaryotes. Ubiquitin-dependent internalization, recycling, and degradation are important mechanisms that regulate the activity and the abundance of plasma membrane (PM)-localized proteins. In plants, although several ubiquitin ligases are implicated in these processes, no deubiquitinating enzymes (DUBs), have been identified that directly remove ubiquitin from membrane proteins and limit their vacuolar degradation. Here, we discover two DUB proteins, UBP12 and UBP13, that directly target the PM-localized brassinosteroid (BR) receptor BR INSENSITIVE1 (BRI1) in Arabidopsis. BRI1 protein abundance is decreased in the ubp12i/ubp13 double mutant that displayed severe growth defects and reduced sensitivity to BRs. UBP13 directly interacts with and effectively removes K63-linked polyubiquitin chains from BRI1, thereby negatively modulating its vacuolar targeting and degradation. Our study reveals that UBP12 and UBP13 play crucial roles in governing BRI1 abundance and BR signaling activity to regulate plant growth.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Endopeptidases , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Brassinosteroids/metabolism , Deubiquitinating Enzymes/metabolism , Endopeptidases/genetics , Endopeptidases/metabolism
2.
Nat Plants ; 6(5): 533-543, 2020 05.
Article in English | MEDLINE | ID: mdl-32393883

ABSTRACT

During lateral root initiation, lateral root founder cells undergo asymmetric cell divisions that generate daughter cells with different sizes and fates, a prerequisite for correct primordium organogenesis. An excess of the GLV6/RGF8 peptide disrupts these initial asymmetric cell divisions, resulting in more symmetric divisions and the failure to achieve lateral root organogenesis. Here, we show that loss-of-function GLV6 and its homologue GLV10 increase asymmetric cell divisions during lateral root initiation, and we identified three members of the RGF1 INSENSITIVE/RGF1 receptor subfamily as likely GLV receptors in this process. Through a suppressor screen, we found that MITOGEN-ACTIVATED PROTEIN KINASE6 is a downstream regulator of the GLV pathway. Our data indicate that GLV6 and GLV10 act as inhibitors of asymmetric cell divisions and signal through RGF1 INSENSITIVE receptors and MITOGEN-ACTIVATED PROTEIN KINASE6 to restrict the number of initial asymmetric cell divisions that take place during lateral root initiation.


Subject(s)
Arabidopsis Proteins/physiology , Cell Division , Intracellular Signaling Peptides and Proteins/physiology , Mitogen-Activated Protein Kinases/physiology , Peptides/physiology , Plant Roots/growth & development , Blotting, Western , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/physiology , Signal Transduction
3.
J Integr Plant Biol ; 60(9): 827-840, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29877613

ABSTRACT

Plants deploy numerous plasma membrane receptors to sense and rapidly react to environmental changes. Correct localization and adequate protein levels of the cell-surface receptors are critical for signaling activation and modulation of plant development and defense against pathogens. After ligand binding, receptors are internalized for degradation and signaling attenuation. However, one emerging notion is that the ligand-induced endocytosis of receptor complexes is important for the signal duration, amplitude, and specificity. Recently, mutants of major endocytosis players, including clathrin and dynamin, have been shown to display defects in activation of a subset of signal transduction pathways, implying that signaling in plants might not be solely restricted to the plasma membrane. Here, we summarize the up-to-date knowledge of receptor complex endocytosis and its effect on the signaling outcome, in the context of plant development and immunity.


Subject(s)
Endocytosis/physiology , Plants/metabolism , Cell Membrane/metabolism , Clathrin/metabolism , Dynamins/metabolism , Endocytosis/genetics , Plants/genetics , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...