Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Mol Ther ; 32(7): 2113-2129, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38788710

ABSTRACT

Sepsis-associated encephalopathy (SAE) is a frequent complication of severe systemic infection resulting in delirium, premature death, and long-term cognitive impairment. We closely mimicked SAE in a murine peritoneal contamination and infection (PCI) model. We found long-lasting synaptic pathology in the hippocampus including defective long-term synaptic plasticity, reduction of mature neuronal dendritic spines, and severely affected excitatory neurotransmission. Genes related to synaptic signaling, including the gene for activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) and members of the transcription-regulatory EGR gene family, were downregulated. At the protein level, ARC expression and mitogen-activated protein kinase signaling in the brain were affected. For targeted rescue we used adeno-associated virus-mediated overexpression of ARC in the hippocampus in vivo. This recovered defective synaptic plasticity and improved memory dysfunction. Using the enriched environment paradigm as a non-invasive rescue intervention, we found improvement of defective long-term potentiation, memory, and anxiety. The beneficial effects of an enriched environment were accompanied by an increase in brain-derived neurotrophic factor (BDNF) and ARC expression in the hippocampus, suggesting that activation of the BDNF-TrkB pathway leads to restoration of the PCI-induced reduction of ARC. Collectively, our findings identify synaptic pathomechanisms underlying SAE and provide a conceptual approach to target SAE-induced synaptic dysfunction with potential therapeutic applications to patients with SAE.


Subject(s)
Brain-Derived Neurotrophic Factor , Cognitive Dysfunction , Cytoskeletal Proteins , Disease Models, Animal , Hippocampus , Neuronal Plasticity , Sepsis-Associated Encephalopathy , Animals , Mice , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/therapy , Cognitive Dysfunction/genetics , Sepsis-Associated Encephalopathy/metabolism , Sepsis-Associated Encephalopathy/etiology , Sepsis-Associated Encephalopathy/therapy , Sepsis-Associated Encephalopathy/genetics , Hippocampus/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Dependovirus/genetics , Male , Long-Term Potentiation , Receptor, trkB/metabolism , Receptor, trkB/genetics , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Synapses/metabolism
2.
Biomedicines ; 10(12)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36551906

ABSTRACT

Sepsis is defined by life-threatening organ dysfunction mediated by the host's response to infection. This can result in septic dyslipidemia, which is involved in the neutralization of pathogen-related lipids. Knowledge of the regulatory mechanisms of septic dyslipidemia is incomplete. The cytokine betatrophin/Angiopoietin-like protein 8 (ANGPTL8) plays a role in the regulation of triacylglyceride metabolism, though its function in septic dyslipidemia remains unknown. Sixty-six patients were enrolled in a cross-sectional study. Circulating concentrations and adipose tissue (AT) mRNA expression of betatrophin/ANGPTL8 were studied in patients suffering from peritoneal sepsis. Insulin-resistant individuals and subjects without metabolic derangement/systemic inflammation were enrolled as controls. All underwent open abdominal surgery. Circulating betatrophin/ANGPTL8 was analyzed by an enzyme-linked immunosorbent assay and AT mRNA expression levels were assessed by real-time PCR. Standard laboratory analyses including lipid electrophoresis were evaluated. Sepsis patients showed pronounced septic dyslipidemia (p < 0.05 for all major lipid classes). Despite comparable betatrophin/ANGPTL8 mRNA expression in AT (p = 0.24), we found significantly increased circulating betatrophin/ANGPTL8 with septic dyslipidemia (p = 0.009). Expression levels of betatrophin/ANGPTL8 in AT correlated with circulating concentrations in both control groups (r = 0.61; p = 0.008 and r = 0.43; p = 0.034), while this association was undetectable in sepsis. After stratification, betatrophin/ANGPTL8 remained associated with hypertriacylglyceridemia (p < 0.05).

3.
JID Innov ; 2(2): 100092, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35199091

ABSTRACT

Circulating phospholipids have been considered as biomarkers and therapeutic targets in multiple disorders. Atopic dermatitis (AD) is the most common inflammatory skin disease. Although there are numerous studies having addressed stratum corneum lipids in the context of epidermal barrier, little is known about the circulating lipids in patients with AD. In this study, we explored the changes of serum phospholipids in AD using liquid chromatography coupled to tandem mass spectrometry and sought serum lipids' contribution to clinical status. Several serum levels of phospholipids were altered in the AD group (n = 179) compared with that in healthy controls (n = 47) and patients without AD with atopic comorbidities (n = 22); lipids exhibiting the apparent changes included increased sphingosine, multiple variants of phosphatidylcholine, and decreased ceramide (16:0) in patients with AD. Moreover, serum levels of sphingosine correlated with the severity of AD, and sphingosine and ceramide(16:0) were also detected as the risk-increasing effect and risk-reduction effect of AD, respectively. In summary, alterations in the serum concentration of phospholipids are seen in patients with AD. Although more detailed investigations will be needed to evaluate the significance of the changes in circulating lipids in AD, these findings can provide, to our knowledge, previously unreported insight into AD's pathogenesis and therapeutic strategies.

4.
Int J Mol Sci ; 23(4)2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35216416

ABSTRACT

Loss of active synapses and alterations in membrane lipids are crucial events in physiological aging as well as in neurodegenerative disorders. Both are related to the abnormal aggregation of amyloid-beta (Aß) species, generally known as amyloidosis. There are two major known human Aß species: Aß(1-40) and Aß(1-42). However, which of these species have more influence on active synapses and membrane lipids is still poorly understood. Additionally, the time-dependent effect of Aß species on alterations in membrane lipids of hippocampal neurones and glial cells remains unknown. Therefore, our study contributes to a better understanding of the role of Aß species in the loss of active synapses and the dysregulation of membrane lipids in vitro. We showed that Aß(1-40) or Aß(1-42) treatment influences membrane lipids before synaptic loss appears and that the loss of active synapses is not dependent on the Aß species. Our lipidomic data analysis showed early changes in specific lipid classes such as sphingolipid and glycerophospholipid neurones. Our results underscore the potential role of lipids as a possible early diagnostic biomarker in amyloidosis-related disorders.


Subject(s)
Amyloid beta-Peptides/metabolism , Membrane Lipids/metabolism , Synapses/metabolism , Alzheimer Disease/metabolism , Animals , Cells, Cultured , Hippocampus/metabolism , Mice , Mice, Inbred C57BL , Neurons/metabolism
5.
Sci Rep ; 12(1): 504, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35017615

ABSTRACT

We provide a descriptive characterization of the unfolded protein response (UPR) in skeletal muscle of human patients with peritoneal sepsis and a sepsis model of C57BL/6J mice. Patients undergoing open surgery were included in a cross-sectional study and blood and skeletal muscle samples were taken. Key markers of the UPR and cluster of differentiation 68 (CD68) as surrogate of inflammatory injury were evaluated by real-time PCR and histochemical staining. CD68 mRNA increased with sepsis in skeletal muscle of patients and animals (p < 0.05). Mainly the inositol-requiring enzyme 1α branch of the UPR was upregulated as shown by elevated X-box binding-protein 1 (XBP1u) and its spliced isoform (XBP1s) mRNA (p < 0.05, respectively). Increased expression of Gadd34 indicated activation of PRKR-Like Endoplasmic Reticulum Kinase (PERK) branch of the UPR, and was only observed in mice (p < 0.001) but not human study subjects. Selected cell death signals were upregulated in human and murine muscle, demonstrated by increased bcl-2 associated X protein mRNA and TUNEL staining (p < 0.05). In conclusion we provide a first characterization of the UPR in skeletal muscle in human sepsis.


Subject(s)
Endoplasmic Reticulum Stress , Muscle, Skeletal/metabolism , Peritoneal Diseases/physiopathology , Sepsis/physiopathology , Unfolded Protein Response , Aged , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Peritoneal Diseases/genetics , Peritoneal Diseases/metabolism , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism , Sepsis/genetics , Sepsis/metabolism , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism
6.
Front Immunol ; 12: 607217, 2021.
Article in English | MEDLINE | ID: mdl-33767693

ABSTRACT

Large clinical trials testing hydrocortisone therapy in septic shock have produced conflicting results. Subgroups may benefit of hydrocortisone treatment depending on their individual immune response. We performed an exploratory analysis of the database from the international randomized controlled clinical trial Corticosteroid Therapy of Septic Shock (CORTICUS) employing machine learning to a panel of 137 variables collected from the Berlin subcohort comprising 83 patients including demographic and clinical measures, organ failure scores, leukocyte counts and levels of circulating cytokines. The identified theranostic marker was validated against data from a cohort of the Hellenic Sepsis Study Group (HSSG) (n = 246), patients enrolled in the clinical trial of Sodium Selenite and Procalcitonin Guided Antimicrobial Therapy in Severe Sepsis (SISPCT, n = 118), and another, smaller clinical trial (Crossover study, n = 20). In addition, in vitro blood culture experiments and in vivo experiments in mouse models were performed to assess biological plausibility. A low serum IFNγ/IL10 ratio predicted increased survival in the hydrocortisone group whereas a high ratio predicted better survival in the placebo group. Using this marker for a decision rule, we applied it to three validation sets and observed the same trend. Experimental studies in vitro revealed that IFNγ/IL10 was negatively associated with the load of (heat inactivated) pathogens in spiked human blood and in septic mouse models. Accordingly, an in silico analysis of published IFNγ and IL10 values in bacteremic and non-bacteremic patients with the Systemic Inflammatory Response Syndrome supported this association between the ratio and pathogen burden. We propose IFNγ/IL10 as a molecular marker supporting the decision to administer hydrocortisone to patients in septic shock. Prospective clinical studies are necessary and standard operating procedures need to be implemented, particularly to define a generic threshold. If confirmed, IFNγ/IL10 may become a suitable theranostic marker for an urging clinical need.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Hydrocortisone/therapeutic use , Interferon-gamma/blood , Interleukin-10/blood , Shock, Septic/blood , Shock, Septic/drug therapy , Adult , Aged , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/adverse effects , Biomarkers , Clinical Decision-Making , Disease Management , Disease Models, Animal , Female , Hemodynamics , Humans , Hydrocortisone/administration & dosage , Hydrocortisone/adverse effects , Lactic Acid/blood , Male , Mice , Middle Aged , Norepinephrine , Odds Ratio , Prognosis , Propensity Score , Shock, Septic/diagnosis , Shock, Septic/mortality , Treatment Outcome
8.
Front Immunol ; 12: 784989, 2021.
Article in English | MEDLINE | ID: mdl-34987511

ABSTRACT

Effective treatment strategies for severe coronavirus disease (COVID-19) remain scarce. Hydrolysis of membrane-embedded, inert sphingomyelin by stress responsive sphingomyelinases is a hallmark of adaptive responses and cellular repair. As demonstrated in experimental and observational clinical studies, the transient and stress-triggered release of a sphingomyelinase, SMPD1, into circulation and subsequent ceramide generation provides a promising target for FDA-approved drugs. Here, we report the activation of sphingomyelinase-ceramide pathway in 23 intensive care patients with severe COVID-19. We observed an increase of circulating activity of sphingomyelinase with subsequent derangement of sphingolipids in serum lipoproteins and from red blood cells (RBC). Consistent with increased ceramide levels derived from the inert membrane constituent sphingomyelin, increased activity of acid sphingomyelinase (ASM) accurately distinguished the patient cohort undergoing intensive care from healthy controls. Positive correlational analyses with biomarkers of severe clinical phenotype support the concept of an essential pathophysiological role of ASM in the course of SARS-CoV-2 infection as well as of a promising role for functional inhibition with anti-inflammatory agents in SARS-CoV-2 infection as also proposed in independent observational studies. We conclude that large-sized multicenter, interventional trials are now needed to evaluate the potential benefit of functional inhibition of this sphingomyelinase in critically ill patients with COVID-19.


Subject(s)
COVID-19/metabolism , Ceramides/metabolism , Signal Transduction , Sphingomyelin Phosphodiesterase/metabolism , Anti-Inflammatory Agents/therapeutic use , COVID-19/virology , Ceramides/blood , Enzyme Activation , Erythrocyte Membrane/metabolism , Erythrocytes/metabolism , Fatty Acids/metabolism , Humans , Intensive Care Units , Patient Acuity , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Sphingomyelin Phosphodiesterase/blood , Sphingomyelins/metabolism , COVID-19 Drug Treatment
9.
Front Med (Lausanne) ; 7: 616500, 2020.
Article in English | MEDLINE | ID: mdl-33553211

ABSTRACT

Breakdown of the inert and constitutive membrane building block sphingomyelin to the highly active lipid mediator ceramide by extracellularly active acid sphingomyelinase is tightly regulated during stress response and opens the gate for invading pathogens, triggering the immune response, development of remote organ failure, and tissue repair following severe infection. How do one enzyme and one mediator manage all of these affairs? Under physiological conditions, the enzyme is located in the lysosomes and takes part in the noiseless metabolism of sphingolipids, but following stress the protein is secreted into circulation. When secreted, acid sphingomyelinase (ASM) is able to hydrolyze sphingomyelin present at the outer leaflet of membranes to ceramide. Its generation troubles the biophysical context of cellular membranes resulting in functional assembly and reorganization of proteins and receptors, also embedded in highly conserved response mechanisms. As a consequence of cellular signaling, not only induction of cell death but also proliferation, differentiation, and fibrogenesis are affected. Here, we discuss the current state of the art on both the impact and function of the enzyme during host response and damage control. Also, the potential role of lysosomotropic agents as functional inhibitors of this upstream alarming cascade is highlighted.

10.
Front Med (Lausanne) ; 7: 616578, 2020.
Article in English | MEDLINE | ID: mdl-33553212

ABSTRACT

Scientific Background: Sphingolipids are a highly diverse group of lipids with respect to physicochemical properties controlling either structure, distribution, or function, all of them regulating cellular response in health and disease. Mass spectrometry, on the other hand, is an analytical technique characterizing ionized molecules or fragments thereof by mass-to-charge ratios, which has been prosperingly developed for rapid and reliable qualitative and quantitative identification of lipid species. Parallel to best performance of in-depth chromatographical separation of lipid classes, preconditions of precise quantitation of unique molecular species by preprocessing of biological samples have to be fulfilled. As a consequence, "lipid profiles" across model systems and human individuals, esp. complex (clinical) samples, have become eminent over the last couple of years due to sensitivity, specificity, and discriminatory capability. Therefore, it is significance to consider the entire experimental strategy from sample collection and preparation, data acquisition, analysis, and interpretation. Areas Covered: In this review, we outline considerations with clinical (i.e., human) samples with special emphasis on sample handling, specific physicochemical properties, target measurements, and resulting profiling of sphingolipids in biomedicine and translational research to maximize sensitivity and specificity as well as to provide robust and reproducible results. A brief commentary is also provided regarding new insights of "clinical sphingolipidomics" in translational sepsis research. Expert Opinion: The role of mass spectrometry of sphingolipids and related species ("sphingolipidomics") to investigate cellular and compartment-specific response to stress, e.g., in generalized infection and sepsis, is on the rise and the ability to integrate multiple datasets from diverse classes of biomolecules by mass spectrometry measurements and metabolomics will be crucial to fostering our understanding of human health as well as response to disease and treatment.

12.
EBioMedicine ; 42: 120-132, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30905847

ABSTRACT

BACKGROUND: Sepsis, the most severe form of infection, involves endothelial dysfunction which contributes to organ failure. To improve therapeutic prospects, elucidation of molecular mechanisms underlying endothelial vascular failure is of essence. METHODS: Polymicrobial contamination induced sepsis mouse model and primary endothelial cells incubated with sepsis serum were used to study SHP-2 in sepsis-induced endothelial inflammation. SHP-2 activity was assessed by dephosphorylation of pNPP, ROS production was measured by DCF oxidation and protein interactions were assessed by proximity ligation assay. Vascular inflammation was studied in the mouse cremaster model and in an in vitro flow assay. FINDINGS: We identified ROS-dependent inactivation of the tyrosine phosphatase SHP-2 to be decisive for endothelial activation in sepsis. Using in vivo and in vitro sepsis models, we observed a significant reduction of endothelial SHP-2 activity, accompanied by enhanced adhesion molecule expression. The impaired SHP-2 activity was restored by ROS inhibitors and an IL-1 receptor antagonist. SHP-2 activity inversely correlated with the adhesive phenotype of endothelial cells exposed to IL-1ß as well as sepsis serum via p38 MAPK and NF-κB. In vivo, SHP-2 inhibition accelerated IL-1ß-induced leukocyte adhesion, extravasation and vascular permeability. Mechanistically, SHP-2 directly interacts with the IL-1R1 adaptor protein MyD88 via its tyrosine 257, resulting in reduced binding of p85/PI3-K to MyD88. INTERPRETATION: Our data show that SHP-2 inactivation by ROS in sepsis releases a protective break, resulting in endothelial activation. FUND: German Research Foundation, LMU Mentoring excellence and FöFoLe Programme, Verein zur Förderung von Wissenschaft und Forschung, German Ministry of Education and Research.


Subject(s)
Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Sepsis/metabolism , Sepsis/physiopathology , Animals , Cytokines/metabolism , Disease Models, Animal , Endothelial Cells/metabolism , Enzyme Activation , Female , Humans , Inflammation Mediators/metabolism , Leukocytes/metabolism , Male , Mice , NF-kappa B/metabolism , Phosphorylation , Protein Binding , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Reactive Oxygen Species/metabolism , Sepsis/etiology
13.
Int J Mol Sci ; 19(10)2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30326559

ABSTRACT

Liver dysfunction during sepsis is an independent risk factor leading to increased mortality rates. Specifically, dysregulation of hepatic biotransformation capacity, especially of the cytochrome P450 (CYP) system, represents an important distress factor during host response. The activity of the conserved stress enzyme sphingomyelin phosphodiesterase 1 (SMPD1) has been shown to be elevated in sepsis patients, allowing for risk stratification. Therefore, the aim of the present study was to investigate whether SMPD1 activity has an impact on expression and activity of different hepatic CYP enzymes using an animal model of polymicrobial sepsis. Polymicrobial sepsis was induced in SMPD1 wild-type and heterozygous mice and hepatic ceramide content as well as CYP mRNA, protein expression and enzyme activities were assessed at two different time points, at 24 h, representing the acute phase, and at 28 days, representing the post-acute phase of host response. In the acute phase of sepsis, SMPD1+/+ mice showed an increased hepatic C16- as well as C18-ceramide content. In addition, a downregulation of CYP expression and activities was detected. In SMPD1+/- mice, however, no noticeable changes of ceramide content and CYP expression and activities during sepsis could be observed. After 28 days, CYP expression and activities were normalized again in all study groups, whereas mRNA expression remained downregulated in SMPD+/+ animals. In conclusion, partial genetic inhibition of SMPD1 stabilizes hepatic ceramide content and improves hepatic monooxygenase function in the acute phase of polymicrobial sepsis. Since we were also able to show that the functional inhibitor of SMPD1, desipramine, ameliorates downregulation of CYP mRNA expression and activities in the acute phase of sepsis in wild-type mice, SMPD1 might be an interesting pharmacological target, which should be further investigated.


Subject(s)
Biotransformation/drug effects , Ceramides/metabolism , Liver/drug effects , Liver/metabolism , Phosphodiesterase Inhibitors/pharmacology , Sepsis/metabolism , Sepsis/microbiology , Sphingomyelin Phosphodiesterase/antagonists & inhibitors , Animals , Biomarkers , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Disease Models, Animal , Female , Gene Expression , Host-Pathogen Interactions , Isoenzymes , Liver Diseases/etiology , Liver Diseases/metabolism , Male , Mice , Sepsis/complications , Sepsis/genetics
15.
J Surg Res ; 227: 72-80, 2018 07.
Article in English | MEDLINE | ID: mdl-29804866

ABSTRACT

BACKGROUND: Controversial clinical findings of low-dose hydrocortisone supplementation in septic shock led us to investigate the impact of administration in lethal septic shock in adrenalectomized rats. MATERIALS AND METHODS: After preliminary experiments, to define the intravenous dose of hydrocortisone delivered in bilaterally adrenalectomized rats with serum cortisol level similar to sham rats, survival experiments were run in 75 rats after intraperitoneal challenge with Escherichia coli. Rats were treated with placebo, ertapenem, hydrocortisone, and a combination. Sacrifice experiments were run to measure gene transcripts in whole blood and in the liver and to assess cytokine stimulation of splenocytes and tissue overgrowth. RESULTS: The combination of hydrocortisone and ertapenem was superior to any single treatment and mandatory to achieve survival benefit. Splenocytes from infected rats had decreased production of tumor necrosis factor-alpha (TNFα); this was reversed with hydrocortisone treatment. Hydrocortisone increased the expression of TNF, Il1r2, and Hdac4 and decreased that of Dnmt3a. Bacterial burden of E. coli in kidney was decreased after hydrocortisone treatment. CONCLUSIONS: Low dose of hydrocortisone is a mandatory adjunctive to antimicrobial therapy in a rat model of septic shock after bilateral adrenalectomy. The mechanism of action is related to reversal of sepsis-induced immunosuppression through interaction with histone deacetylases and de novo DNA methyltransferases.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents/administration & dosage , Ertapenem/therapeutic use , Hydrocortisone/administration & dosage , Shock, Septic/drug therapy , Administration, Intravenous , Adrenalectomy , Animals , Anti-Inflammatory Agents/pharmacology , Cytokines/blood , Cytokines/metabolism , Disease Models, Animal , Drug Therapy, Combination/methods , Escherichia coli/pathogenicity , Hydrocortisone/pharmacology , Immune Tolerance/drug effects , Immunity, Innate/drug effects , Immunity, Innate/immunology , Liver/pathology , Male , Rats , Rats, Wistar , Shock, Septic/immunology , Shock, Septic/microbiology , Shock, Septic/mortality , Treatment Outcome , Tumor Necrosis Factor-alpha
16.
Eur J Med Chem ; 153: 73-104, 2018 Jun 10.
Article in English | MEDLINE | ID: mdl-29031494

ABSTRACT

Ceramide generation is involved in signal transduction of cellular stress response, in particular during stress-induced apoptosis in response to stimuli such as minimally modified Low-density lipoproteins, TNFalpha and exogenous C6-ceramide. In this paper we describe 48 diverse synthetic products and evaluate their lysosomotropic and acid sphingomyelinase inhibiting activities in macrophages. A stimuli-induced increase of C16-ceramide in macrophages can be almost completely suppressed by representative compound NB 06 providing an effective protection of macrophages against apoptosis. Compounds like NB 06 thus offer highly interesting fields of application besides prevention of apoptosis of macrophages in atherosclerotic plaques in vessel walls. Most importantly, they can be used for blocking pH-dependent lysosomal processes and enzymes in general as well as for analyzing lysosomal dependent cellular signaling. Modulation of gene expression of several prominent inflammatory messengers IL1B, IL6, IL23A, CCL4 and CCL20 further indicate potentially beneficial effects in the field of (systemic) infections involving bacterial endotoxins like LPS or infections with influenza A virus.


Subject(s)
Apoptosis/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Lysosomes/drug effects , Sphingomyelin Phosphodiesterase/antagonists & inhibitors , Cell Line , Cells, Cultured , Ceramides/immunology , Humans , Inflammation/drug therapy , Inflammation/immunology , Lipopolysaccharides/immunology , Lysosomes/immunology , Macrophages/drug effects , Macrophages/immunology , Signal Transduction/drug effects , Sphingomyelin Phosphodiesterase/immunology
17.
Front Microbiol ; 8: 2366, 2017.
Article in English | MEDLINE | ID: mdl-29238336

ABSTRACT

Blood stream infections can be caused by several pathogens such as viruses, fungi and bacteria and can cause severe clinical complications including sepsis. Delivery of appropriate and quick treatment is mandatory. However, it requires a rapid identification of the invading pathogen. The current gold standard for pathogen identification relies on blood cultures and these methods require a long time to gain the needed diagnosis. The use of in situ experiments attempts to identify pathogen specific immune responses but these often lead to heterogeneous biomarkers due to the high variability in methods and materials used. Using gene expression profiles for machine learning is a developing approach to discriminate between types of infection, but also shows a high degree of inconsistency. To produce consistent gene signatures, capable of discriminating fungal from bacterial infection, we have employed Support Vector Machines (SVMs) based on Mixed Integer Linear Programming (MILP). Combining classifiers by joint optimization constraining them to the same set of discriminating features increased the consistency of our biomarker list independently of leukocyte-type or experimental setup. Our gene signature showed an enrichment of genes of the lysosome pathway which was not uncovered by the use of independent classifiers. Moreover, our results suggest that the lysosome genes are specifically induced in monocytes. Real time qPCR of the identified lysosome-related genes confirmed the distinct gene expression increase in monocytes during fungal infections. Concluding, our combined classifier approach presented increased consistency and was able to "unmask" signaling pathways of less-present immune cells in the used datasets.

18.
Sci Rep ; 7(1): 12348, 2017 09 27.
Article in English | MEDLINE | ID: mdl-28955042

ABSTRACT

The molecular mechanisms of maladaptive response in liver tissue with respect to the acute and post-acute phase of sepsis are not yet fully understood. Long-term sepsis survivors might develop hepatocellular/hepatobiliary injury and fibrosis. Here, we demonstrate that acid sphingomyelinase, an important regulator of hepatocyte apoptosis and hepatic stellate cell (HSC) activation, is linked to the promotion of liver dysfunction in the acute phase of sepsis as well as to fibrogenesis in the long-term. In both phases, we observed a beneficial effect of partial genetic sphingomyelinase deficiency in heterozygous animals (smpd1+/-) on oxidative stress levels, hepatobiliary function, macrophage infiltration and on HSC activation. Strikingly, similar to heterozygote expression of SMPD1, either preventative (p-smpd1+/+) or therapeutic (t-smpd1+/+) pharmacological treatment strategies with desipramine - a functional inhibitor of acid sphingomyelinase (FIASMA) - significantly improved liver function and survival. The inhibition of sphingomyelinase exhibited a protective effect on liver function in the acute-phase, and the reduction of HSC activation diminished development of sepsis-associated liver fibrosis in the post-acute phase of sepsis. In summary, targeting sphingomyelinase with FDA-approved drugs is a novel promising strategy to overcome sepsis-induced liver dysfunction.


Subject(s)
Desipramine/pharmacology , Liver Cirrhosis/prevention & control , Liver/drug effects , Sepsis/complications , Sphingomyelin Phosphodiesterase/antagonists & inhibitors , Animals , Apoptosis/drug effects , Cell Line , Desipramine/therapeutic use , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/pathology , Humans , Liver/cytology , Liver/pathology , Liver Cirrhosis/etiology , Liver Cirrhosis/pathology , Male , Mice , Mice, Transgenic , Oxidative Stress/drug effects , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism , Treatment Outcome
19.
Int J Mol Sci ; 18(4)2017 Apr 15.
Article in English | MEDLINE | ID: mdl-28420138

ABSTRACT

Cardiac dysfunction, in particular of the left ventricle, is a common and early event in sepsis, and is strongly associated with an increase in patients' mortality. Acid sphingomyelinase (SMPD1)-the principal regulator for rapid and transient generation of the lipid mediator ceramide-is involved in both the regulation of host response in sepsis as well as in the pathogenesis of chronic heart failure. This study determined the degree and the potential role to which SMPD1 and its modulation affect sepsis-induced cardiomyopathy using both genetically deficient and pharmacologically-treated animals in a polymicrobial sepsis model. As surrogate parameters of sepsis-induced cardiomyopathy, cardiac function, markers of oxidative stress as well as troponin I levels were found to be improved in desipramine-treated animals, desipramine being an inhibitor of ceramide formation. Additionally, ceramide formation in cardiac tissue was dysregulated in SMPD1+/+ as well as SMPD1-/- animals, whereas desipramine pretreatment resulted in stable, but increased ceramide content during host response. This was a result of elevated de novo synthesis. Strikingly, desipramine treatment led to significantly improved levels of surrogate markers. Furthermore, similar results in desipramine-pretreated SMPD1-/- littermates suggest an SMPD1-independent pathway. Finally, a pattern of differentially expressed transcripts important for regulation of apoptosis as well as antioxidative and cytokine response supports the concept that desipramine modulates ceramide formation, resulting in beneficial myocardial effects. We describe a novel, protective role of desipramine during sepsis-induced cardiac dysfunction that controls ceramide content. In addition, it may be possible to modulate cardiac function during host response by pre-conditioning with the Food and Drug Administration (FDA)-approved drug desipramine.


Subject(s)
Ceramides/metabolism , Heart Diseases/etiology , Heart Diseases/physiopathology , Lipid Metabolism , Sepsis/complications , Sepsis/metabolism , Animals , Biomarkers , Cardiac Output/drug effects , Desipramine/metabolism , Desipramine/pharmacology , Disease Models, Animal , Female , Gene Expression Profiling , Gene Expression Regulation , Heart Diseases/drug therapy , Heart Diseases/metabolism , L-Lactate Dehydrogenase/metabolism , Male , Mice , Mice, Knockout , Mice, Transgenic , Myocardium/metabolism , Oxidative Stress/drug effects , Sepsis/genetics , Sepsis/microbiology , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism , Troponin I/metabolism
20.
Hepatol Res ; 47(9): 890-901, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27689765

ABSTRACT

AIMS: Molecular adaptations in human non-alcoholic fatty liver disease (NAFLD) are incompletely understood. This study investigated the main gene categories related to hepatic de novo lipogenesis and lipid oxidation capacity. METHODS: Liver specimens of 48 subjects were histologically classified according to steatosis severity. In-depth analyses were undertaken using real-time polymerase chain reaction, immunoblotting, and immunohistochemistry. Lipid profiles were analyzed by gas chromatography/flame ionization detection, and effects of key fatty acids were studied in primary human hepatocytes. RESULTS: Real-time polymerase chain reaction, immunoblotting, and immunohistochemistry indicated 5'AMP-activated protein kinase (AMPK) to be increased with steatosis score ≥ 2 (all P < 0.05), including various markers of de novo lipogenesis and lipid degradation (all P < 0.05). Regarding endoplasmic reticulum stress, X-Box binding protein-1 (XBP1) was upregulated in steatosis score ≥ 2 (P = 0.029) and correlated with plasma palmitate (r = 0.34; P = 0.035). Palmitate incubation of primary human hepatocytes increased XBP1 and downstream stearoyl CoA desaturase-1 mRNA expression (both P < 0.05). Moreover, plasma and liver tissue exposed a NAFLD-related lipid profile with reduced polyunsaturated/saturated fatty acid ratio, increased palmitate and palmitoleate, and elevated lipogenesis and desaturation indices with steatosis score ≥ 2 (all P < 0.05). CONCLUSION: In humans with advanced fatty liver disease, hepatic AMPK protein is upregulated, potentially in a compensatory manner. Moreover, pathways of lipid synthesis and degradation are co-activated in subjects with advanced steatosis. Palmitate may drive lipogenesis by activating XBP1-mediated endoplasmic reticulum stress and represent a target for future dietary or pharmacological intervention.

SELECTION OF CITATIONS
SEARCH DETAIL
...