Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38470778

ABSTRACT

High-resolution imaging of Cu/low-k on-chip interconnect stacks in advanced microelectronic products is demonstrated using full-field transmission X-ray microscopy (TXM). The comparison of two lens-based laboratory X-ray microscopes that are operated at two different photon energies, 8.0 keV and 9.2 keV, shows a contrast enhancement for imaging of copper nanostructures embedded in insulating organosilicate glass of a factor of 5 if 9.2 keV photons are used. Photons with this energy (Ga-Kα radiation) are generated from a Ga-containing target of a laboratory X-ray source applying the liquid-metal-jet technology. The 5 times higher contrast compared to the use of Cu-Kα radiation (8.0 keV photon energy) from a rotating anode X-ray source is caused by the fact that the energy of the Ga-Kα emission line is slightly higher than that of the Cu-K absorption edge (9.0 keV photon energy). The use of Ga-Kα radiation is of particular advantage for imaging of copper interconnects with dimensions from several 100 nm down to several 10 nm in a Cu/SiO2 or Cu/low-k backend-of-line stack. Physical failure analysis and reliability engineering in the semiconductor industry will benefit from high-contrast X-ray images of sub-µm copper structures in microchips.

2.
Nanomaterials (Basel) ; 14(2)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38276751

ABSTRACT

High-resolution imaging of buried metal interconnect structures in advanced microelectronic products with full-field X-ray microscopy is demonstrated in the hard X-ray regime, i.e., at photon energies > 10 keV. The combination of two multilayer optics-a side-by-side Montel (or nested Kirkpatrick-Baez) condenser optic and a high aspect-ratio multilayer Laue lens-results in an asymmetric optical path in the transmission X-ray microscope. This optics arrangement allows the imaging of 3D nanostructures in opaque objects at a photon energy of 24.2 keV (In-Kα X-ray line). Using a Siemens star test pattern with a minimal feature size of 150 nm, it was proven that features < 150 nm can be resolved. In-Kα radiation is generated from a Ga-In alloy target using a laboratory X-ray source that employs the liquid-metal-jet technology. Since the penetration depth of X-rays into the samples is significantly larger compared to 8 keV photons used in state-of-the-art laboratory X-ray microscopes (Cu-Kα radiation), 3D-nanopattered materials and structures can be imaged nondestructively in mm to cm thick samples. This means that destructive de-processing, thinning or cross-sectioning of the samples are not needed for the visualization of interconnect structures in microelectronic products manufactured using advanced packaging technologies. The application of laboratory transmission X-ray microscopy in the hard X-ray regime is demonstrated for Cu/Cu6Sn5/Cu microbump interconnects fabricated using solid-liquid interdiffusion (SLID) bonding.

3.
MethodsX ; 10: 102028, 2023.
Article in English | MEDLINE | ID: mdl-36785800

ABSTRACT

For micromechanical robustness evaluation methods, it is advantageous if the mechanical loading conditions applied can be controlled as precisely as possible. For microchips, this is required to determine the robustness under specific conditions, e.g. during assembly or characteristic application/usage scenarios. In this work, three different micromechanical BEoL (Back End of Line) robustness evaluation methods are presented which should enable a more precise and flexible mechanical load induction and damage identification. They have been subsequently developed. Three main aspects characterize the customization of the developed approaches:•The design and testing of customized micro-tools to precisely apply mechanical load to individual Cu-pillars.•The implementation of an AE (Acoustic Emission) monitoring approach to detect minor damages during mechanical loading. This strategy also enabled the development of sub-critical loading experiments for which AE signals served as a damage indicator and mechanical loading was aborted upon the detection of AE events.•The development of a new measurement setup and approach to enable the solder attach of individual Cu-pillars to a mechanical testing system. The applications of these approaches should enable the induction of customized mechanical loading conditions and the identification of failure modes and damage initiation locations.

4.
Nanomaterials (Basel) ; 11(6)2021 Jun 20.
Article in English | MEDLINE | ID: mdl-34202999

ABSTRACT

Fossil frustules of Ellerbeckia and Melosira were studied using laboratory-based nano X-ray tomography (nano-XCT), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Three-dimensional (3D) morphology characterization using nondestructive nano-XCT reveals the continuous connection of fultoportulae, tube processes and protrusions. The study confirms that Ellerbeckia is different from Melosira. Both genera reveal heavily silicified frustules with valve faces linking together and forming cylindrical chains. For this cylindrical architecture of both genera, valve face thickness, mantle wall thickness and copulae thickness change with the cylindrical diameter. Furthermore, EDS reveals that these fossil frustules contain Si and O only, with no other elements in the percentage concentration range. Nanopores with a diameter of approximately 15 nm were detected inside the biosilica of both genera using TEM. In situ micromechanical experiments with uniaxial loading were carried out within the nano-XCT on these fossil frustules to determine the maximal loading force under compression and to describe the fracture behavior. The fracture force of both genera is correlated to the dimension of the fossil frustules. The results from in situ mechanical tests show that the crack initiation starts either at very thin features or at linking structures of the frustules.

5.
Nanomaterials (Basel) ; 10(5)2020 05 18.
Article in English | MEDLINE | ID: mdl-32443489

ABSTRACT

Diatom frustules, with their hierarchical three-dimensional patterned silica structures at nano to micrometer dimensions, can be a paragon for the design of lightweight structural materials. However, the mechanical properties of frustules, especially the species with pennate symmetry, have not been studied systematically. A novel approach combining in situ micro-indentation and high-resolution X-ray computed tomography (XCT)-based finite element analysis (FEA) at the identical sample is developed and applied to Didymosphenia geminata frustule. Furthermore, scanning electron microscopy and transmission electron microscopy investigations are conducted to obtain detailed information regarding the resolvable structures and the composition. During the in situ micro-indentation studies of Didymosphenia geminata frustule, a mainly elastic deformation behavior with displacement discontinuities/non-linearities is observed. To extract material properties from obtained load-displacement curves in the elastic region, elastic finite element method (FEM) simulations are conducted. Young's modulus is determined as 31.8 GPa. The method described in this paper allows understanding of the mechanical behavior of very complex structures.

6.
Nanomaterials (Basel) ; 10(4)2020 Mar 28.
Article in English | MEDLINE | ID: mdl-32231143

ABSTRACT

The mechanical properties such as compressive strength and nanohardness were investigated for Pinctada margaritifera mollusk shells. The compressive strength was evaluated through a uniaxial static compression test performed along the load directions parallel and perpendicular to the shell axis, respectively, while the hardness and Young modulus were measured using nanoindentation. In order to observe the crack propagation, for the first time for such material, the in-situ X-ray microscopy (nano-XCT) imaging (together with 3D reconstruction based on the acquired images) during the indentation tests was performed. The results were compared with these obtained during the micro-indentation test done with the help of conventional Vickers indenter and subsequent scanning electron microscopy observations. The results revealed that the cracks formed during the indentation start to propagate in the calcite prism until they reach a ductile organic matrix where most of them are stopped. The obtained results confirm a strong anisotropy of both crack propagation and the mechanical strength caused by the formation of the prismatic structure in the outer layer of P. margaritifera shell.

7.
Nanomaterials (Basel) ; 9(2)2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30704027

ABSTRACT

Fully printed and flexible inorganic electrolyte gated transistors (EGTs) on paper with a channel layer based on an interconnected zinc oxide (ZnO) nanoparticle matrix are reported in this work. The required rheological properties and good layer formation after printing are obtained using an eco-friendly binder such as ethyl cellulose (EC) to disperse the ZnO nanoparticles. Fully printed devices on glass substrates using a composite solid polymer electrolyte as gate dielectric exhibit saturation mobility above 5 cm² V-1 s-1 after annealing at 350 °C. Proper optimization of the nanoparticle content in the ink allows for the formation of a ZnO channel layer at a maximum annealing temperature of 150 °C, compatible with paper substrates. These devices show low operation voltages, with a subthreshold slope of 0.21 V dec-1, a turn on voltage of 1.90 V, a saturation mobility of 0.07 cm² V-1 s-1 and an Ion/Ioff ratio of more than three orders of magnitude.

8.
J Vis Exp ; (100): e52447, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-26167933

ABSTRACT

The time-dependent dielectric breakdown (TDDB) in on-chip interconnect stacks is one of the most critical failure mechanisms for microelectronic devices. The aggressive scaling of feature sizes, both on devices and interconnects, leads to serious challenges to ensure the required product reliability. Standard reliability tests and post-mortem failure analysis provide only limited information about the physics of failure mechanisms and degradation kinetics. Therefore it is necessary to develop new experimental approaches and procedures to study the TDDB failure mechanisms and degradation kinetics in particular. In this paper, an in situ experimental methodology in the transmission electron microscope (TEM) is demonstrated to investigate the TDDB degradation and failure mechanisms in Cu/ULK interconnect stacks. High quality imaging and chemical analysis are used to study the kinetic process. The in situ electrical test is integrated into the TEM to provide an elevated electrical field to the dielectrics. Electron tomography is utilized to characterize the directed Cu diffusion in the insulating dielectrics. This experimental procedure opens a possibility to study the failure mechanism in interconnect stacks of microelectronic products, and it could also be extended to other structures in active devices.


Subject(s)
Electronics/instrumentation , Electronics/methods , Microscopy, Electron, Transmission/instrumentation , Microscopy, Electron, Transmission/methods , Copper/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...