Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Mol Biol (Mosk) ; 53(6): 1038-1048, 2019.
Article in Russian | MEDLINE | ID: mdl-31876282

ABSTRACT

Transcriptional enhancers in the cell nuclei typically interact with the target promoters in cis over long stretches of chromatin, but the mechanism of this communication remains unknown. Previously we have developed a defined in vitro system for quantitative analysis of the rate of distant enhancer-promoter communication (EPC) and have shown that the chromatin fibers maintain efficient distant EPC in cis. Here we investigate the roles of linker histone H1 and HMGN5 protein in EPC. A considerable negative effect of histone H1 on EPC depending on its C- and N-tails was shown. Protein HMGN5 that affects chromatin compaction and is associated with active chromatin counteracts EPC inhibition by H1. The data suggest that the efficiency of the interaction between the enhancer and the promoter depends on the structure and dynamics of the chromatin fiber localized between them and can be regulated by proteins associated with chromatin.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , HMGN Proteins/metabolism , Histones/metabolism , Chromatin/chemistry , Enhancer Elements, Genetic/genetics , Promoter Regions, Genetic/genetics
2.
J Phys Condens Matter ; 27(6): 064112, 2015 Feb 18.
Article in English | MEDLINE | ID: mdl-25564155

ABSTRACT

The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes-the familiar assemblies of ∼150 DNA base pairs and eight histone proteins-found on chromatin fibers. Here we introduce a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs. We explore the effects of nucleosome positioning and the presence or absence of cationic N-terminal histone tails on the 'local' inter-nucleosomal interactions and the global deformations of the simulated chains. The correspondence between the predicted and observed effects of nucleosome composition and numbers on the long-range communication between the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We also extract effective nucleosome-nucleosome potentials from the simulations and implement the potentials in a larger-scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable effect of nucleosome spacing on chromatin flexibility, with small changes in DNA linker length significantly altering the interactions of nucleosomes and the dimensions of the fiber as a whole. In addition, we find that these changes in nucleosome positioning influence the statistical properties of long chromatin constructs. That is, simulated chromatin fibers with the same number of nucleosomes exhibit polymeric behaviors ranging from Gaussian to worm-like, depending upon nucleosome spacing. These findings suggest that the physical and mechanical properties of chromatin can span a wide range of behaviors, depending on nucleosome positioning, and that care must be taken in the choice of models used to interpret the experimental properties of long chromatin fibers.


Subject(s)
Computer Simulation , Nucleosomes/chemistry , DNA/chemistry , DNA/metabolism , Models, Molecular , Nucleic Acid Conformation , Nucleosomes/metabolism , Protein Conformation , Static Electricity
3.
Biophys J ; 96(9): 3716-23, 2009 May 06.
Article in English | MEDLINE | ID: mdl-19413977

ABSTRACT

We present a self-contained theory for the mechanical response of DNA in single molecule experiments. Our model is based on a one-dimensional continuum description of the DNA molecule and accounts both for its elasticity and for DNA-DNA electrostatic interactions. We consider the classical loading geometry used in experiments where one end of the molecule is attached to a substrate and the other one is pulled by a tensile force and twisted by a given number of turns. We focus on configurations relevant to the limit of a large number of turns, which are made up of two phases, one with linear DNA and the other one with superhelical DNA. The model takes into account thermal fluctuations in the linear phase and electrostatic interactions in the superhelical phase. The values of the torsional stress, of the supercoiling radius and angle, and key features of the experimental extension-rotation curves, namely the slope of the linear region and thermal buckling threshold, are predicted. They are found in good agreement with experimental data.


Subject(s)
DNA/chemistry , Elasticity , Models, Molecular , Algorithms , Nucleic Acid Conformation , Rotation , Static Electricity
4.
Phys Rev Lett ; 99(16): 164301, 2007 Oct 19.
Article in English | MEDLINE | ID: mdl-17995255

ABSTRACT

We study the mechanical response of elastic rods bent into open knots, focusing on the case of trefoil and cinquefoil topologies. The limit of a weak applied tensile force is studied both analytically and experimentally: the Kirchhoff equations with self-contact are solved by means of matched asymptotic expansions; predictions on both the geometrical and mechanical properties of the elastic equilibrium are compared to experiments. The extension of the theory to tight knots is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...