Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(6)2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38542140

ABSTRACT

Macrophage metalloelastase or matrix metalloproteinase-12 (MMP12) is a macrophage-specific proteolytic enzyme involved in the physiopathology of many inflammatory diseases, including inflammatory bowel disease. Although previously published data suggested that the modulation of MMP12 in macrophages could be a determinant for the development of intestinal inflammation, scarce information is available on the mechanisms underlying the regulation of MMP12 expression in those phagocytes. Therefore, in this study, we aimed to delineate the association of MMP12 with inflammatory bowel disease and the molecular events leading to the transcriptional control of this metalloproteinase. For that, we used publicly available transcriptional data. Also, we worked with the RAW 264.7 macrophage cell line for functional experiments. Our results showed a strong association of MMP12 expression with the severity of inflammatory bowel disease and the response to relevant biological therapies. In vitro assays revealed that the inhibition of mechanistic target of rapamycin complex 1 (mTORC1) and the stimulation of the AMP-activated protein kinase (AMPK) signaling pathway potentiated the expression of Mmp12. Additionally, AMPK and mTOR required a functional downstream glycolytic pathway to fully engage with Mmp12 expression. Finally, the pharmacological inhibition of MMP12 abolished the expression of the proinflammatory cytokine Interleukin-6 (Il6) in macrophages. Overall, our findings provide a better understanding of the mechanistic regulation of MMP12 in macrophages and its relationship with inflammation.


Subject(s)
Inflammatory Bowel Diseases , Matrix Metalloproteinase 12 , Humans , AMP-Activated Protein Kinases/metabolism , Inflammation/metabolism , Inflammatory Bowel Diseases/metabolism , Macrophages/metabolism , Matrix Metalloproteinase 12/genetics , Matrix Metalloproteinase 12/metabolism , Metabolic Networks and Pathways , RNA/metabolism , Animals , Mice
2.
Oncogene ; 42(5): 389-405, 2023 01.
Article in English | MEDLINE | ID: mdl-36476833

ABSTRACT

The R-RAS2 GTP hydrolase (GTPase) (also known as TC21) has been traditionally considered quite similar to classical RAS proteins at the regulatory and signaling levels. Recently, a long-tail hotspot mutation targeting the R-RAS2/TC21 Gln72 residue (Q72L) was identified as a potent oncogenic driver. Additional point mutations were also found in other tumors at low frequencies. Despite this, little information is available regarding the transforming role of these mutant versions and their relevance for the tumorigenic properties of already-transformed cancer cells. Here, we report that many of the RRAS2 mutations found in human cancers are highly transforming when expressed in immortalized cell lines. Moreover, the expression of endogenous R-RAS2Q72L is important for maintaining optimal levels of PI3K and ERK activities as well as for the adhesion, invasiveness, proliferation, and mitochondrial respiration of ovarian and breast cancer cell lines. Endogenous R-RAS2Q72L also regulates gene expression programs linked to both cell adhesion and inflammatory/immune-related responses. Endogenous R-RAS2Q72L is also quite relevant for the in vivo tumorigenic activity of these cells. This dependency is observed even though these cancer cell lines bear concurrent gain-of-function mutations in genes encoding RAS signaling elements. Finally, we show that endogenous R-RAS2, unlike the case of classical RAS proteins, specifically localizes in focal adhesions. Collectively, these results indicate that gain-of-function mutations of R-RAS2/TC21 play roles in tumor initiation and maintenance that are not fully redundant with those regulated by classical RAS oncoproteins.


Subject(s)
Monomeric GTP-Binding Proteins , Neoplasms , Humans , Cell Line , Monomeric GTP-Binding Proteins/genetics , Neoplasms/genetics , ras Proteins/genetics , ras Proteins/metabolism , Signal Transduction/genetics
3.
Cell Rep ; 38(11): 110522, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35294890

ABSTRACT

A missense change in RRAS2 (Gln72 to Leu), analogous to the Gln61-to-Leu mutation of RAS oncoproteins, has been identified as a long-tail hotspot mutation in cancer and Noonan syndrome. However, the relevance of this mutation for in vivo tumorigenesis remains understudied. Here we show, using an inducible knockin mouse model, that R-Ras2Q72L triggers rapid development of a wide spectrum of tumors when somatically expressed in adult tissues. These tumors show limited overlap with those originated by classical Ras oncogenes. R-Ras2Q72L-driven tumors can be classified into different subtypes according to therapeutic susceptibility. Importantly, the most relevant R-Ras2Q72L-driven tumors are dependent on mTORC1 but independent of phosphatidylinositol 3-kinase-, MEK-, and Ral guanosine diphosphate (GDP) dissociation stimulator. This pharmacological vulnerability is due to the extensive rewiring by R-Ras2Q72L of pathways that orthogonally stimulate mTORC1 signaling. These findings demonstrate that RRAS2Q72L is a bona fide oncogenic driver and unveil therapeutic strategies for patients with cancer and Noonan syndrome bearing RRAS2 mutations.


Subject(s)
Monomeric GTP-Binding Proteins , Noonan Syndrome , Animals , Carcinogenesis/genetics , Humans , Mechanistic Target of Rapamycin Complex 1 , Membrane Proteins , Mice , Monomeric GTP-Binding Proteins/genetics , Mutation/genetics , Oncogenes
4.
Mol Cancer ; 21(1): 35, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35120522

ABSTRACT

BACKGROUND: Chronic lymphocytic leukemia (CLL) is the most frequent, and still incurable, form of leukemia in the Western World. It is widely accepted that cancer results from an evolutionary process shaped by the acquisition of driver mutations which confer selective growth advantage to cells that harbor them. Clear examples are missense mutations in classic RAS genes (KRAS, HRAS and NRAS) that underlie the development of approximately 13% of human cancers. Although autonomous B cell antigen receptor (BCR) signaling is involved and mutations in many tumor suppressor genes and oncogenes have been identified, an oncogenic driver gene has not still been identified for CLL. METHODS: Conditional knock-in mice were generated to overexpress wild type RRAS2 and prove its driver role. RT-qPCR analysis of a human CLL sample cohort was carried out to measure RRAS2 transcriptional expression. Sanger DNA sequencing was used to identify a SNP in the 3'UTR region of RRAS2 in human CLL samples. RNAseq of murine CLL was carried out to identify activated pathways, molecular mechanisms and to pinpoint somatic mutations accompanying RRAS2 overexpression. Flow cytometry was used for phenotypic characterization and shRNA techniques to knockdown RRAS2 expression in human CLL. RESULTS: RRAS2 mRNA is found overexpressed in its wild type form in 82% of the human CLL samples analyzed (n = 178, mean and median = 5-fold) as well as in the explored metadata. A single nucleotide polymorphism (rs8570) in the 3'UTR of the RRAS2 mRNA has been identified in CLL patients, linking higher expression of RRAS2 with more aggressive disease. Deliberate overexpression of wild type RRAS2 in mice, but not an oncogenic Q72L mutation in the coding sequence, provokes the development of CLL. Overexpression of wild type RRAS2 in mice is accompanied by a strong convergent selection of somatic mutations in genes that have been identified in human CLL. R-RAS2 protein is physically bound to the BCR and mediates BCR signals in CLL. CONCLUSIONS: The results indicate that overexpression of wild type RRAS2 is behind the development of CLL.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Monomeric GTP-Binding Proteins , Animals , Genes, ras , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Membrane Proteins/genetics , Mice , Monomeric GTP-Binding Proteins/genetics , Mutation , Receptors, Antigen, B-Cell , Signal Transduction
5.
RNA Biol ; 18(sup1): 182-197, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34530680

ABSTRACT

Biochemical studies of the human ribosome synthesis pathway have been hindered by technical difficulties in obtaining intact preribosomal complexes from internal regions of the nucleolus. Here we provide a detailed description of an extraction method that enables efficient detection, isolation, and characterization of nucleolar preribosomes containing large pre-rRNA species. The three-step Preribosome Sequential Extraction (PSE) protocol preserves the integrity of early preribosomal complexes and yields preparations amenable to biochemical analyses from low amounts of starting material. We validate this procedure through the detection of specific trans-acting factors and pre-rRNAs in the extracted preribosomes using affinity matrix pull-downs and sedimentation assays. In addition, we describe the application of the PSE method for monitoring cellular levels of ribosome-free 5S RNP complexes as an indicator of ribosome biogenesis stress. Our optimized experimental procedures will facilitate studies of human ribosome biogenesis in normal, mutant and stressed-cell scenarios, including the characterization of candidate ribosome biogenesis factors, preribosome interactors under specific physiological conditions or effects of drugs on ribosome maturation.


Subject(s)
Cell Nucleolus/metabolism , RNA Precursors/metabolism , RNA, Ribosomal/metabolism , Ribosomal Proteins/isolation & purification , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Cell Nucleolus/genetics , HCT116 Cells , HeLa Cells , Humans , RNA Precursors/genetics , RNA, Ribosomal/genetics , Ribosomal Proteins/genetics , Ribosomes/genetics
6.
Cell Stem Cell ; 22(5): 769-778.e4, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29727683

ABSTRACT

Diet has a profound effect on tissue regeneration in diverse organisms, and low caloric states such as intermittent fasting have beneficial effects on organismal health and age-associated loss of tissue function. The role of adult stem and progenitor cells in responding to short-term fasting and whether such responses improve regeneration are not well studied. Here we show that a 24 hr fast augments intestinal stem cell (ISC) function in young and aged mice by inducing a fatty acid oxidation (FAO) program and that pharmacological activation of this program mimics many effects of fasting. Acute genetic disruption of Cpt1a, the rate-limiting enzyme in FAO, abrogates ISC-enhancing effects of fasting, but long-term Cpt1a deletion decreases ISC numbers and function, implicating a role for FAO in ISC maintenance. These findings highlight a role for FAO in mediating pro-regenerative effects of fasting in intestinal biology, and they may represent a viable strategy for enhancing intestinal regeneration.


Subject(s)
Aging , Fasting/metabolism , Fatty Acids/metabolism , Homeostasis , Intestines/cytology , Stem Cells/cytology , Stem Cells/metabolism , Animals , Cells, Cultured , Mice , Mice, Inbred Strains , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...