Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 912: 169030, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38056675

ABSTRACT

Winter legume cover crops or double-cropping in high N-fertilizer maize-based sprinkler-irrigated systems enhance agroecosystem diversity and potentially increase yields. However, the effects on direct N2O emissions and global warming potential (GWP) have not been fully established. For two years, in the Ebro Valley (Spain), four maize-based systems consisted of: long-season maize (Zea mays) with winter fallow period (F-LSM) the reference system; or after a leguminous cover crop (common vetch, Vicia sativa) (CC-LSM); and short-season maize after a cereal crop (barley, Hordeum vulgare) (B-SSM) or after a leguminous crop (pea, Pisum sativum) (P-SSM). They were assessed in terms of productivity, direct greenhouse gasses emissions (GHG: N2O, CH4, CO2), and global warming potential (GWP). Direct GHG emissions were measured using the static chamber technique, while soil parameters were monitored. Crop yields and nitrogen uptake were also quantified. GHG emissions linked to management and inputs were calculated to obtain GWP and greenhouse gas intensity (GHGI). The most productive system (B-SSM) obtained the highest direct (79 %, 35 %, and 30 % higher than the F-LSM, P-SSM, and CC-SSM, respectively) and scaled N2O emissions. The P-SSM system had similar N-uptake-scaled emissions to the monocropping (MC) systems. Irrigation, fertilizer, and farm operations accounted for the 26 %, 31 %, and 27 % of the total indirect emissions, respectively. Fertilizer production-related emissions in B-SSM and F-LSM systems were 172 % and 45 % higher than the average emissions in the systems with legumes (461 kg CO2eq. ha-1). Diversified systems lead to slightly higher GHGI values than the reference system (F-LSM). However, no differences were found between the F-LSM and P-SSM systems in GWP (4521 and 5512 kg CO2-eq. ha-1, respectively) or GHGI (144 and 158 kg CO2-eq. ha-1, respectively). The P-SSM system may be a potential alternative for increasing the diversification of maize-based irrigated agrosystems without increasing GHG emissions.


Subject(s)
Fabaceae , Greenhouse Gases , Zea mays , Carbon Dioxide/analysis , Fertilizers/analysis , Nitrous Oxide/analysis , Soil , Vegetables , Agriculture/methods , Methane/analysis
2.
Waste Manag ; 27(5): 656-63, 2007.
Article in English | MEDLINE | ID: mdl-16707257

ABSTRACT

The amount of polymer material wasted during thermoplastic injection moulding is very high. It comes from both the feed system of the part, and parts necessary to set up the mould, as well as the scrap generated along the process due to quality problems. The residues are managed through polymer recycling that allows reuse of the materials in the manufacturing injection process. Recycling mills convert the parts into small pieces that are used as feed material for injection, by mixing the recycled feedstock in different percentages with raw material. This mixture of both raw and recycled material modifies material properties according to the percentage of recycled material introduced. Some of the properties affected by this modification are those related to rheologic behaviour, which strongly conditions the future injection moulding process. This paper analyzes the rheologic behaviour of material with different percentages of recycled material by means of a capillary rheometer, and evaluates the influence of the corresponding viscosity curves obtained on the injection moulding process, where small variations of parameters related to rheological behaviour, such as pressure or clamping force, can be critical to the viability and cost of the parts manufactured by injection moulding.


Subject(s)
Conservation of Natural Resources , Manufactured Materials , Polyethylene , Injections/methods , Polymers/chemistry , Rheology , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...