Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Microbiol Spectr ; 11(1): e0143122, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36519851

ABSTRACT

Listeria monocytogenes, a foodborne pathogen, and other Listeria spp. are present in natural environments. Isolating and characterizing strains from natural reservoirs can provide insight into the prevalence and diversity of Listeria spp. in these environments, elucidate their contribution to contamination of agricultural and food processing environments and food products, and lead to the discovery of novel species. In this study, we evaluated the diversity of Listeria spp. isolated from soil in a small region of the Great Smoky Mountains National Park, the most biodiverse national park in the U.S. National Park system. Of the 17 Listeria isolates recovered, whole-genome sequencing revealed that 14 were distinct strains. The strains represented a diversity of Listeria species (L. monocytogenes [n = 9], L. cossartiae subsp. cossartiae [n = 1], L. marthii [n = 1], L. booriae [n = 1], and a potentially novel Listeria sp. [n = 2]), as well as a diversity of sequence types based on multilocus sequence typing (MLST) and core genome MLST, including many novel designations. The isolates were not closely related (≥99.99% average nucleotide identity) to any isolates in public databases (NCBI, PATRIC), which also indicated novelty. The Listeria samples isolated in this study were collected from high-elevation sites near a creek that ultimately leads to the Mississippi River; thus, Listeria present in this natural environment could potentially travel downstream to a large region that includes portions of nine southeastern and midwestern U.S. states. This study provides insight into the diversity of Listeria spp. in the Great Smoky Mountains and indicates that this environment is a reservoir of novel Listeria spp. IMPORTANCE Listeria monocytogenes is a foodborne pathogen that can cause serious systemic illness that, although rare, usually results in hospitalization and has a relatively high mortality rate compared to other foodborne pathogens. Identification of novel and diverse Listeria spp. can provide insights into the genomic evolution, ecology, and evolution and variance of pathogenicity of this genus, especially in natural environments. Comparing L. monocytogenes and Listeria spp. isolates from natural environments, such as those recovered in this study, to contamination and/or outbreak strains may provide more information about the original natural sources of these strains and the pathways and mechanisms that lead to contamination of food products and agricultural or food processing environments.


Subject(s)
Listeria monocytogenes , Listeria , Listeriosis , Humans , Listeria/genetics , Soil , Multilocus Sequence Typing , Food Microbiology
2.
Sci Rep ; 12(1): 9137, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35650389

ABSTRACT

Recently, a new Listeria species, "Listeria swaminathanii", was proposed. Here, we phenotypically and genotypically characterize two additional strains that were previously obtained from soil samples and compare the results to the type strain. Complete genomes for both strains were assembled from hybrid Illumina and Nanopore sequencing reads and annotated. Further genomic analysis including average nucleotide identity (ANI) and detection of mobile genetic elements and genes of interest (e.g., virulence-associated) were conducted. The strains showed 98.7-98.8% ANI with the type strain. The UTK C1-0015 genome contained a partial monocin locus and a plasmid, while the UTK C1-0024 genome contained a full monocin locus and a prophage. Phenotypic characterization consistent with those performed on the proposed type strain was conducted to assess consistency of phenotypes across a greater diversity of the proposed species (n = 3 instead of n = 1). Only a few findings were notably different from those of the type strain, such as catalase activity, glycerol metabolism, starch metabolism, and growth at 41 °C. This study further expands our understanding of this newly proposed sensu stricto Listeria species.


Subject(s)
Genome, Bacterial , Listeria , Genomics/methods , High-Throughput Nucleotide Sequencing , Listeria/genetics , Phenotype , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...