Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 25(7): 104632, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35800780

ABSTRACT

Pathogen recognition and TNF receptors signal via receptor interacting serine/threonine kinase-3 (RIPK3) to cause cell death, including MLKL-mediated necroptosis and caspase-8-dependent apoptosis. However, the post-translational control of RIPK3 is not fully understood. Using mass-spectrometry, we identified that RIPK3 is ubiquitylated on K469. The expression of mutant RIPK3 K469R demonstrated that RIPK3 ubiquitylation can limit both RIPK3-mediated apoptosis and necroptosis. The enhanced cell death of overexpressed RIPK3 K469R and activated endogenous RIPK3 correlated with an overall increase in RIPK3 ubiquitylation. Ripk3 K469R/K469R mice challenged with Salmonella displayed enhanced bacterial loads and reduced serum IFNγ. However, Ripk3 K469R/K469R macrophages and dermal fibroblasts were not sensitized to RIPK3-mediated apoptotic or necroptotic signaling suggesting that, in these cells, there is functional redundancy with alternate RIPK3 ubiquitin-modified sites. Consistent with this idea, the mutation of other ubiquitylated RIPK3 residues also increased RIPK3 hyper-ubiquitylation and cell death. Therefore, the targeted ubiquitylation of RIPK3 may act as either a brake or accelerator of RIPK3-dependent killing.

2.
Immunol Cell Biol ; 100(3): 160-173, 2022 03.
Article in English | MEDLINE | ID: mdl-35048402

ABSTRACT

The role of RNA-binding proteins of the CCCH-containing family in regulating proinflammatory cytokine production and inflammation is increasingly recognized. We have identified ZC3H12C (Regnase-3) as a potential post-transcriptional regulator of tumor necrosis factor expression and have investigated its role in vivo by generating Zc3h12c-deficient mice that express green fluorescent protein instead of ZC3H12C. Zc3h12c-deficient mice develop hypertrophic lymph nodes. In the immune system, ZC3H12C expression is mostly restricted to the dendritic cell (DC) populations, and we show that DC-restricted ZC3H12C depletion is sufficient to cause lymphadenopathy. ZC3H12C can regulate Tnf messenger RNA stability via its RNase activity in vitro, and we confirmed the role of Tnf in the development of lymphadenopathy. Finally, we found that loss of ZC3H12C did not impact the outcome of skin inflammation in the imiquimod-induced murine model of psoriasis, despite Zc3h12c being identified as a risk factor for psoriasis susceptibility in several genome-wide association studies. Our data suggest a role for ZC3H12C in DC-driven skin homeostasis.


Subject(s)
Lymphadenopathy , Psoriasis , Animals , Dendritic Cells , Genome-Wide Association Study , Inflammation/pathology , Lymph Nodes/pathology , Lymphadenopathy/pathology , Mice , Mice, Inbred C57BL , Skin/pathology
3.
iScience ; 23(11): 101726, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33210082

ABSTRACT

Post-transcriptional regulation mechanisms control mRNA stability or translational efficiency via ribosomes, and recent evidence indicates that it is a major determinant of the accurate levels of cytokine mRNAs. Transcriptional regulation of Tnf has been well studied and found to be important for the rapid induction of Tnf mRNA and regulation of the acute phase of inflammation, whereas study of its post-transcriptional regulation has been largely limited to the role of the AU-rich element (ARE), and to a lesser extent, to that of the constitutive decay element (CDE). We have identified another regulatory element (NRE) in the 3' UTR of Tnf and demonstrate that ARE, CDE, and NRE cooperate in vivo to efficiently downregulate Tnf expression and prevent autoimmune inflammatory diseases. We also show that excessive TNF may lead to embryonic death.

4.
EMBO Rep ; 21(11): e50400, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32954645

ABSTRACT

Signaling via the intracellular pathogen receptors nucleotide-binding oligomerization domain-containing proteins NOD1 and NOD2 requires receptor interacting kinase 2 (RIPK2), an adaptor kinase that can be targeted for the treatment of various inflammatory diseases. However, the molecular mechanisms of how RIPK2 contributes to NOD signaling are not completely understood. We generated FLAG-tagged RIPK2 knock-in mice using CRISPR/Cas9 technology to study NOD signaling mechanisms at the endogenous level. Using cells from these mice, we were able to generate a detailed map of post-translational modifications on RIPK2. Similar to other reports, we did not detect ubiquitination of RIPK2 lysine 209 during NOD2 signaling. However, using site-directed mutagenesis we identified a new regulatory region on RIPK2, which dictates the crucial interaction with the E3 ligase XIAP and downstream signaling outcomes.


Subject(s)
Nod2 Signaling Adaptor Protein , Receptor-Interacting Protein Serine-Threonine Kinase 2 , Animals , Mice , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2/genetics , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Regulatory Sequences, Nucleic Acid , Signal Transduction , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...