Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Exp Biol Med (Maywood) ; 246(20): 2184-2191, 2021 10.
Article in English | MEDLINE | ID: mdl-34315279

ABSTRACT

The cornea's mechanical response to intraocular pressure elevations may alter in ectatic diseases such as keratoconus. Regional variations of mechanical deformation in normal and keratoconus eyes during intraocular pressure elevation have not been well-characterized. We applied a high-frequency ultrasound elastography technique to characterize the regional deformation of normal and keratoconus human corneas through the full thickness of corneal stroma. A cross-section centered at the corneal apex in 11 normal and 2 keratoconus human donor eyes was imaged with high-frequency ultrasound during whole globe inflation from 5 to 30 mmHg. An ultrasound speckle tracking algorithm was used to compute local tissue displacements. Radial, tangential, and shear strains were mapped across the imaged cross-section. Strains in the central (1 mm surrounding apex) and paracentral (1 to 4 mm from apex) regions were analyzed in both normal and keratoconus eyes. Additional regional analysis was performed in the eye with severe keratoconus presenting significant thinning and scarring. Our results showed that in normal corneas, the central region had significantly smaller tangential stretch than the paracentral region, and that within the central region, the magnitudes of radial and shear strains were significantly larger than that of tangential strain. The eye with mild keratoconus had similar shear strain but substantially larger radial strains than normal corneas, while the eye with severe keratoconus had similar overall strains as in normal eyes but marked regional heterogeneity and large strains in the cone region. These findings suggested regional variation of mechanical responses to intraocular pressure elevation in both normal and keratoconus corneas, and keratoconus appeared to be associated with mechanical weakening in the cone region, especially in resisting radial compression. Comprehensive characterization of radial, tangential, and shear strains through corneal stroma may provide new insights to understand the biomechanical alterations in keratoconus.


Subject(s)
Corneal Stroma/diagnostic imaging , Elasticity Imaging Techniques/methods , Intraocular Pressure/physiology , Keratoconus/diagnostic imaging , Ultrasonography/methods , Adult , Aged , Algorithms , Biomechanical Phenomena , Corneal Stroma/pathology , Female , Humans , Keratoconus/diagnosis , Male , Middle Aged
2.
Exp Eye Res ; 200: 108202, 2020 11.
Article in English | MEDLINE | ID: mdl-32861767

ABSTRACT

Mechanical insult induced by intraocular pressure (IOP) is likely a driving force in the disease process of glaucoma. This study aimed to evaluate regional displacements in human optic nerve head (ONH) and peripapillary tissue (PPT) in response to acute IOP elevations, and their correlations with morphological characteristics of the posterior eye. Cross-sectional (2D) images of the ONH and PPT in 14 globes of 14 human donors were acquired with high-frequency ultrasound during whole globe inflation from 5 to 30 mm Hg. High-frequency ultrasound has a spatial resolution of tens of micrometers and is capable of imaging through the ONH and PPT thickness. Tissue displacements were calculated using a correlation-based speckle tracking algorithm for a dense matrix of kernels covering the 2D imaging plane. The ONH was manually segmented in the ultrasound B-mode images acquired at 5 mmHg based on echogenicity. The lamina cribrosa (LC) boundaries were visible in eight of the fourteen eyes and the LC region was segmented using a semi-automated superpixel-based method. The ONH had larger radial displacement than the PPT in all tested eyes and the difference increased with increasing IOP. A significant negative correlation was found between ONH-PPT displacement difference and PPT thickness (p < 0.05), while no significant correlations were found between ONH-PPT displacement difference and other morphological parameters including PPT radius of curvature, scleral canal size, LC thickness and anterior LC surface depth. Within the ONH, the radial displacement decreased in the region anterior to and across LC but not in the region posterior to LC. Finite element models using simplified geometry and material properties confirmed the role of LC in reducing the overall ONH radial displacements, but did not predict the displacement gradient change observed experimentally. These results suggested that a thinner PPT may be associated with a larger relative posterior motion of the ONH with respect to the surrounding PPT and the LC may play a major role in preventing excessive posterior displacement of ONH during acute IOP elevations.


Subject(s)
Algorithms , Glaucoma/diagnosis , Intraocular Pressure/physiology , Optic Disk/pathology , Sclera/pathology , Adult , Aged , Cross-Sectional Studies , Female , Finite Element Analysis , Glaucoma/physiopathology , Humans , Male , Middle Aged , Ultrasonography , Young Adult
3.
Transl Vis Sci Technol ; 9(1): 5, 2020 01.
Article in English | MEDLINE | ID: mdl-32509440

ABSTRACT

Purpose: In vivo evaluation of corneal biomechanics holds the potential for improving diagnosis and management of ocular diseases. We aimed to develop an ocular pulse elastography (OPE) technique to quantify corneal strains generated by naturally occurring pulsations of the intraocular pressure (IOP) using high-frequency ultrasound. Methods: Simulated ocular pulses were induced in whole porcine and human donor globes to investigate the effects of physiologic variations in baseline IOP, ocular pulse amplitude, and frequency on corneal strains. Ocular pulse-induced strains were measured in additional globes before and after UVA-riboflavin-induced corneal crosslinking. The central cornea in each eye was imaged with a 50-MHz ultrasound imaging system and correlation-based speckle tracking of radiofrequency data was used to calculate tissue displacements and strains. Results: Ocular pulse-induced corneal strains followed the cyclic changes of IOP. Both baseline IOP and ocular pulse amplitude had a significant influence on strain magnitude. Variations in pulse frequency within the normal human heart rate range did not introduce detectable changes in corneal strains. A significant decrease of corneal strain, as quantified by the OPE technique, was observed after corneal crosslinking. The extent of corneal stiffening (i.e., strain reduction) seemed to correlate with the initial strain magnitude. Conclusions: This ex vivo study demonstrated the feasibility of the OPE method to quantify corneal strains generated by IOP pulsation and detect changes associated with corneal crosslinking treatment. Translational Relevance: Integrating in vivo measurement of IOP and ocular pulse amplitude, the OPE method may lead to a new clinical tool for safe and quick biomechanical evaluations of the cornea.


Subject(s)
Elasticity Imaging Techniques , Animals , Cornea/diagnostic imaging , Heart Rate , Humans , Swine , Tonometry, Ocular , Ultrasonography
4.
Cornea ; 39(9): 1151-1156, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32558731

ABSTRACT

PURPOSE: To evaluate the influence of cryopreservation on the pressure-strain relationship of microkeratome dissected anterior stromal grafts (ASGs). METHODS: Partial thickness ASGs were created from 7 pairs of human corneas and randomized to immediate grafting or grafting after 3 months of cryopreservation at -80°C into a whole globe ex vivo corneal perforation model. High frequency ultrasound speckle tracking was used to calculate the cross-sectional axial and lateral strains in each graft at increasing intraocular pressure (IOP) from 5 to 30 mm Hg. The mean axial and lateral strains were compared between the paired groups. RESULTS: The mean axial and lateral strains were not significantly different between the cryopreserved and noncryopreserved ASGs. The mean lateral strains at 30 mm Hg in the noncryopreserved and cryopreserved grafts were 2.4% ± 2.1% and 1.4% ± 0.7% (P = 0.294), respectively. The mean axial strains at 30 mm Hg in the noncryopreserved and cryopreserved grafts were -7.8% ± 3.3% and -5.5% ± 3.0% (P = 0.198), respectively. A linear pressure-strain relationship was found for all grafts at physiologic IOP. CONCLUSIONS: ASGs cryopreserved at -80°C maintain their IOP-strain relationship compared with noncryopreserved ASGs at physiologic pressures, supporting the potential use of cryopreserved human corneal stroma for patch grafting procedures.


Subject(s)
Cornea/surgery , Corneal Perforation/surgery , Corneal Transplantation/methods , Cryopreservation/methods , Adult , Aged , Cross-Sectional Studies , Female , Humans , Male , Middle Aged
5.
Transl Vis Sci Technol ; 9(13): 33, 2020 12.
Article in English | MEDLINE | ID: mdl-33384887

ABSTRACT

Purpose: The purpose of this study was to establish in vivo data acquisition and processing protocols for repeatable measurements of heartbeat-induced corneal displacements and strains in human eyes, using a high-frequency ultrasound elastography method, termed ocular pulse elastography (OPE). Methods: Twenty-four volunteers with no known ocular diseases were recruited for this study. Intraocular pressure (IOP) and ocular pulse amplitude (OPA) were measured using a PASCAL Dynamic Contour Tonometer (DCT). An in vivo OPE protocol was developed to measure heartbeat-induced corneal displacements. Videos of the central 5.7 mm of the cornea were acquired using a 50-MHz ultrasound probe at 128 frames per second. The radiofrequency data of 1000 frames were analyzed using an ultrasound speckle tracking algorithm to calculate corneal displacements and quantify spectral and temporal characteristics. The intrasession and intersession repeatability of OPE- and DCT-measured parameters were also analyzed. Results: The in vivo OPE protocol and setup were successful in tracking heartbeat-induced corneal motion using high-frequency ultrasound. Corneal axial displacements showed a strong cardiac rhythm, with good intrasession and intersession repeatability, and high interocular symmetry. Corneal strain was calculated in two eyes of two subjects, showing substantially different responses. Conclusions: We demonstrated the feasibility of high-frequency ultrasound elastography for noninvasive in vivo measurement of the cornea's biomechanical responses to the intrinsic ocular pulse. The high intrasession and intersession repeatability suggested a robust implementation of this technique to the in vivo setting. Translational Relevance: OPE may offer a useful tool for clinical biomechanical evaluation of the cornea by quantifying its response to the intrinsic pulsation.


Subject(s)
Elasticity Imaging Techniques , Cornea/diagnostic imaging , Healthy Volunteers , Heart Rate , Humans , Tonometry, Ocular
6.
Curr Eye Res ; 45(2): 111-117, 2020 02.
Article in English | MEDLINE | ID: mdl-31474157

ABSTRACT

Purpose: The purpose of this study was to develop an effective treatment method using poloxamers to restore and maintain physiological hydration in postmortem porcine and human corneas during ex vivo experimentation, and to compare corneal inflation response with or without treatment.Materials and Methods: Corneal buttons obtained from whole globes (n = 30 porcine, n = 8 human) were treated with various concentrations of poloxamer 188 (P188, a synthetic macromolecule surfactant) for 24 hrs to identify the concentration that would return the cornea to near-physiological hydration (i.e. H = 3.2). Whole globes (n = 12 porcine, n = 16 human) were also used to monitor central corneal thickness (CCT) during deswelling treatment. Inflation testing from 5 to 30 mmHg was performed in the porcine globes and a subset of human globes to characterize the mechanical response of the cornea after treatment.Results: Physiological hydration was obtained after 24 hrs immersion in 3.25% P188 for porcine corneas and 4.25% P188 treatment for human corneas. CCT was stabilized and returned to physiological levels after 24 hrs of treatment in 3.25% P188 in porcine (891 ± 66 µm) and 4.25% P188 in human (574 ± 34 µm) whole globes. Corneal axial strains at 30 mmHg were significantly larger at physiological hydration than in swollen cornea in both porcine (-6.42%±1.50% vs. -3.64%±1.05%, p = .004) and human (-2.85%±0.09% in vs. -1.53%±0.27%, p = .031) eyes.Conclusions: Our results suggest that P188 treatment was effective in restoring and maintaining near physiological corneal hydration during ex vivo testing, and hydration appeared to significantly impact corneal inflation response in both porcine and human eyes.


Subject(s)
Body Water/metabolism , Cornea/drug effects , Poloxamer/therapeutic use , Surface-Active Agents/therapeutic use , Animals , Biomechanical Phenomena , Cornea/metabolism , Corneal Pachymetry , Elasticity , Humans , Swine , Tissue Donors
7.
J Biomech Eng ; 142(5)2020 05 01.
Article in English | MEDLINE | ID: mdl-31750882

ABSTRACT

Characterization of the biomechanical behavior of the optic nerve head (ONH) in response to intraocular pressure (IOP) elevation is important for understanding glaucoma susceptibility. In this study, we aimed to develop and validate a three-dimensional (3D) ultrasound elastographic technique to obtain mapping and visualization of the 3D distributive displacements and strains of the ONH and surrounding peripapillary tissue (PPT) during whole globe inflation from 15 to 30 mmHg. 3D scans of the posterior eye around the ONH were acquired through full tissue thickness with a high-frequency ultrasound system (50 MHz). A 3D cross-correlation-based speckle-tracking algorithm was used to compute tissue displacements at ∼30,000 kernels distributed within the region of interest (ROI), and the components of the strain tensors were calculated at each kernel by using least square estimation of the displacement gradients. The accuracy of displacement calculation was evaluated using simulated rigid-body translation on ultrasound radiofrequency (RF) data obtained from a porcine posterior eye. The accuracy of strain calculation was evaluated using finite element (FE) models. Three porcine eyes were tested showing that ONH deformation was heterogeneous with localized high strains. Substantial radial (i.e., through-thickness) compression was observed in the anterior ONH and out-of-plane (i.e., perpendicular to the surface of the shell) shear was shown to concentrate in the vicinity of ONH/PPT border. These preliminary results demonstrated the feasibility of this technique to achieve comprehensive 3D evaluation of the mechanical responses of the posterior eye, which may provide mechanistic insights into the regional susceptibility in glaucoma.


Subject(s)
Glaucoma , Optic Disk , Animals , Biomechanical Phenomena , Elasticity Imaging Techniques , Finite Element Analysis , Intraocular Pressure , Sclera , Swine
8.
Invest Ophthalmol Vis Sci ; 60(4): 913-920, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30835783

ABSTRACT

Purpose: To measure the deformation of the human optic nerve head (ONH) and peripapillary tissue (PPT) in response to acute intraocular pressure (IOP) elevation. Methods: The ONH and PPT of 14 human donor globes were imaged with high-frequency ultrasonography during inflation testing from 5 to 30 mm Hg. A correlation-based speckle tracking algorithm was used to compute tissue displacements, and the through-thickness, in-plane, and shear strains were calculated by using least-squares strain estimation methods. The ONH and PPT were segmented along the anterior-posterior direction and the nasal-temporal direction. Regional displacements and strains were analyzed and compared. Results: The ONH displaced more posteriorly than the PPT in response to an acute IOP increase. Scleral canal expansion was minimal but correlated with ONH posterior displacement at all IOP levels. Through-thickness compression was concentrated in the anterior of both the ONH and the PPT. Shear was concentrated in the vicinity of the canal with higher shear in the peripheral ONH than the central ONH and higher shear in the PPT near the scleral canal than that further away from the canal. Conclusions: High-resolution ultrasound speckle tracking showed a displacement mismatch between the ONH and the PPT, larger compressive strains in the direction of IOP loading in the anterior ONH and PPT, and higher shear strains in the periphery of ONH in response to acute IOP elevation in the human eye. These findings delineate the deformation patterns within and around the ONH and may help understand IOP-associated optic nerve damage.


Subject(s)
Intraocular Pressure/physiology , Ocular Hypertension/physiopathology , Optic Disk/physiopathology , Optic Nerve Diseases/physiopathology , Acute Disease , Adult , Aged , Biomechanical Phenomena , Female , Humans , Imaging, Three-Dimensional , Male , Middle Aged , Nerve Fibers/pathology , Ocular Hypertension/diagnostic imaging , Optic Disk/diagnostic imaging , Optic Nerve Diseases/diagnostic imaging , Retinal Ganglion Cells/pathology , Tissue Donors , Ultrasonography , Young Adult
9.
Invest Ophthalmol Vis Sci ; 59(8): 3779-3788, 2018 07 02.
Article in English | MEDLINE | ID: mdl-30046819

ABSTRACT

Purpose: To measure the deformation of the porcine optic nerve head (ONH) and peripapillary sclera (PPS) in response to intraocular pressure (IOP) elevation. Methods: High-frequency ultrasound was used to image the ONH and PPS of 12 porcine eyes during ex vivo inflation testing from 5 to 30 mm Hg. A speckle tracking algorithm was used to compute tissue displacements in the anterior-posterior direction and expansion of the scleral canal. Through-thickness, in-plane, and shear strains were calculated within the ONH. Regional displacements and strains were analyzed and compared. Results: The ONH and PPS showed overall posterior displacement in response to IOP elevation. Posterior displacement of the ONH was larger than and strongly correlated with the posterior displacement of the PPS throughout inflation testing. Scleral canal expansion was much smaller and leveled off quicker than ONH posterior displacement as IOP increased. Through-thickness compression was concentrated in the anterior ONH, which also experienced larger in-plane and shear strains than the posterior ONH. Within the anterior ONH, all three strains were significantly higher in the periphery compared with the center, with the shear strain exhibiting the greatest difference between the two regions. Conclusions: High-resolution ultrasound speckle tracking revealed the full-thickness mechanical response of the posterior eye to IOP elevation. A mismatch in posterior displacement was found between the ONH and PPS, and regional analyses showed a concentration of strains within the periphery of the anterior porcine ONH. These deformation patterns may help in understanding IOP-associated optic nerve damage and glaucoma susceptibility.


Subject(s)
Intraocular Pressure/physiology , Ocular Hypertension/diagnosis , Optic Disk/diagnostic imaging , Optic Nerve Diseases/diagnosis , Sclera/diagnostic imaging , Ultrasonography/methods , Animals , Disease Models, Animal , Ocular Hypertension/complications , Ocular Hypertension/physiopathology , Optic Nerve Diseases/etiology , Swine
10.
IEEE Trans Med Imaging ; 37(2): 663-670, 2018 02.
Article in English | MEDLINE | ID: mdl-29408793

ABSTRACT

Imaging corneal biomechanical changes or abnormalities is important for better clinical diagnosis and treatment of corneal diseases. We propose a novel ultrasound-based method, called ocular pulse elastography (OPE), to image corneal deformation during the naturally occurring ocular pulse. Experiments on animal and human donor eyes, as well as synthetic radiofrequency (RF) data, were used to evaluate the efficacy of the OPE method. Using very high-frequency ultrasound (center frequency = 55 MHz), correlation-based speckle tracking yielded an accuracy of less than 10% error for axial tissue displacements of or above. Satisfactory speckle tracking was achieved for out-of-plane displacements up to . Using synthetic RF data with or without a pre-defined uniform strain, the OPE method detected strains down to 0.0001 axially and 0.00025 laterally with an error less than 10%. Experiments in human donor eyes showed excellent repeatability with an intraclass correlation of 0.98. The measurement outcome from OPE was also shown to be highly correlated with that of standard inflation. These results suggest the feasibility of OPE as a potential clinical tool for evaluating corneal biomechanics in vivo.


Subject(s)
Cornea/diagnostic imaging , Cornea/physiology , Elasticity Imaging Techniques/methods , Algorithms , Animals , Biomechanical Phenomena/physiology , Humans , Image Processing, Computer-Assisted , Reproducibility of Results , Signal Processing, Computer-Assisted , Swine
11.
Exp Eye Res ; 165: 29-34, 2017 12.
Article in English | MEDLINE | ID: mdl-28864177

ABSTRACT

Factors governing the steady-state IOP have been extensively studied; however, the dynamic aspects of IOP are less understood. Clinical studies have suggested that intraocular pressure (IOP) fluctuation may be associated with glaucoma risk. This study aims to investigate how stiffening of corneoscleral biomechanical properties affects IOP spikes induced by rapid microvolumetric change. Porcine eyes (n = 25 in total) were subjected to volumetric infusions before and after external treatment of a circular area (11 mm diameter) in either the central cornea or posterior sclera. The treated area in the control group was immersed in phosphate-buffered saline (PBS) for 40 min, while the treated area of the chemical crosslinking group was immersed in 4% glutaraldehyde/PBS for 40 min. A subset of the sham-treated eyes was also subjected to volumetric infusions at a raised steady-state IOP. The magnitude of IOP spikes increased after localized chemical crosslinking of either the cornea (27.5% increase, p < 0.001) or the sclera (14.3% increase, p < 0.001) with corneal crosslinking having a stronger effect than scleral crosslinking (p = 0.018). We also observed that raising the steady-state IOP from 15 to 25 mmHg resulted in marked increase in IOP spike magnitudes by 63.9% (p < 0.001). These results suggested that an increased corneoscleral stiffness could significantly increase IOP spike magnitudes at the same volumetric change. Corneal stiffness appeared to have a strong impact on the IOP spike magnitude and may play a major role in regulating rapid volume-pressure dynamics. An increase in steady-state IOP also resulted in larger IOP fluctuations due to the increased "apparent" stiffness of the ocular shell, suggesting a potential interaction between the magnitude of IOP and its fluctuations. Corneoscleral properties may represent additional pathways for understanding and managing glaucoma risk and warrant future investigation.


Subject(s)
Cornea/physiology , Elasticity/physiology , Intraocular Pressure/physiology , Sclera/physiology , Animals , Biomechanical Phenomena , Models, Animal , Ocular Hypertension/physiopathology , Swine , Tonometry, Ocular
12.
J Innov Opt Health Sci ; 10(6)2017 Nov.
Article in English | MEDLINE | ID: mdl-29399203

ABSTRACT

The three-dimensional (3D) mechanical response of the cornea to intraocular pressure (IOP) elevation has not been previously reported. In this study, we use an ultrasound speckle tracking technique to measure the 3D displacements and strains within the central 5.5 mm of porcine corneas during the whole globe inflation. Inflation tests were performed on dextran-treated corneas (treated with a 10% dextran solution) and untreated corneas. The dextran-treated corneas showed an inflation response expected of a thin spherical shell, with through-thickness thinning and in-plane stretch, although the strain magnitudes exhibited a heterogeneous spatial distribution from the central to more peripheral cornea. The untreated eyes demonstrated a response consistent with swelling during experimentation, with through-thickness expansion overriding the inflation response. The average volume ratios obtained in both groups was near 1 confirming general incompressibility, but local regions of volume loss or expansion were observed. These results suggest that biomechanical measurements in 3D provide important new insight to understand the mechanical response of ocular tissues such as the cornea.

SELECTION OF CITATIONS
SEARCH DETAIL
...