Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Environ Contam Toxicol ; 61(1): 115-27, 2011 Jul.
Article in English | MEDLINE | ID: mdl-20803198

ABSTRACT

In 2004, an invasive mat-forming freshwater diatom, Didymosphenia geminata (didymo), was found in New Zealand causing concern with regard to potential consequences for local freshwater ecosystems. A four-stage research program was initiated to identify methods to control D. geminata. This article reports the results of Stage 2, in which four potential control compounds [Gemex™ (a chelated copper formulation), EDTA, Hydrothol®191, and Organic Interceptor™ (a pine oil formulation)] selected in Stage 1 were evaluated for their biocidal efficacy on D. geminata and effects on non-target organisms using both artificial stream and laboratory trials. Artificial stream trials evaluated the mortality rates of D. geminata and fishes to three concentrations of the four biocides, whereas laboratory toxicity trials tested the response of green alga and cladocera to a range of biocide concentrations and exposure times. In artificial stream trials, Gemex and Organic Interceptor were the most effective biocides against D. geminata for a number of measured indices; however, exposure of fishes to Organic Interceptor resulted in high mortality rates. Laboratory toxicity testing indicated that Gemex might negatively affect sensitive stream invertebrates, based on the cladoceran sensitivity at the proposed river control dose. A decision support matrix evaluated the four biocides based on nine criteria stipulated by river stakeholders (effectiveness, non-target species impacts, stalk removal, degradation profile, risks to health and safety, ease of application, neutralization potential, cost, and local regulatory requirements) and Gemex was identified as the product warranting further refinement prior to an in-river trial.


Subject(s)
Chlorophyta/drug effects , Daphnia/drug effects , Diatoms/drug effects , Herbicides/toxicity , Oncorhynchus mykiss , Perciformes , Animals , Copper Sulfate/toxicity , Dicarboxylic Acids/toxicity , Edetic Acid/toxicity , Introduced Species , New Zealand , Pinus/toxicity , Plant Oils/toxicity , Rivers , Toxicity Tests, Acute
2.
Br J Pharmacol ; 124(7): 1467-74, 1998 Aug.
Article in English | MEDLINE | ID: mdl-9723960

ABSTRACT

1. The potential influences of nitric oxide (NO) and prostaglandins on the renal effects of angiotensin II (Ang II) have been investigated in the captopril-treated anaesthetized rat by examining the effect of indomethacin or the NO synthase inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME), on the renal responses obtained during infusion of Ang II directly into the renal circulation. 2. Intrarenal artery (i.r.a.) infusion of Ang II (1-30 ng kg(-1) min(-1)) elicited a dose-dependent decrease in renal vascular conductance (RVC; -38+/-3% at 30 ng kg(-1) min(-1); P < 0.01) and increase in filtration fraction (FF; +49+/-8%; P < 0.05) in the absence of any change in carotid mean arterial blood pressure (MBP). Urine output (Uv), absolute (UNaV) and fractional sodium excretion (FENa), and glomerular filtration rate (GFR) were unchanged during infusion of Ang II 1-30 ng kg(-1) min(-1) (+6+/-17%, +11+/-17%, +22+/-23%, and -5+/-9%, respectively, at 30 ng kg(-1) min(-1)). At higher doses, Ang II (100 and 300 ng kg(-1) min(-1)) induced further decreases in RVC, but with associated increases in MBP, Uv and UNaV. 3. Pretreatment with indomethacin (10 mg kg(-1) i.v.) had no significant effect on basal renal function, or on the Ang II-induced reduction in RVC (-25+/-7% vs -38+/-3% at Ang II 30 ng kg(-1) min(-1)). In the presence of indomethacin, Ang II tended to cause a dose-dependent decrease in GFR (-38+/-10% at 30 ng kg(-1) min(-1)); however, this effect was not statistically significant (P=0.078) when evaluated over the dose range of 1-30 ng kg(-1) min(-1), and was not accompanied by any significant changes in Uv, UNaV or FENa (-21+/-12%, -18+/-16% and +36+/-38%, respectively). 4. Pretreatment with L-NAME (10 microg kg(-1) min(-1) i.v.) tended to reduce basal RVC (control -11.8+/-1.4, +L-NAME -7.9+/-1.8 ml min(-1) mmHg(-1) x 10(-2)), and significantly increased basal FF (control +15.9+/-0.8, +L-NAME +31.0+/-3.7%). In the presence of L-NAME, renal vasoconstrictor responses to Ang II were not significantly modified (-38+/-3% vs -35+/-13% at 30 ng kg(-1) min(-1)), but Ang II now induced dose-dependent decreases in GFR, Uv and UNaV (-51+/-11%, -41+/-14% and -31+/-17%, respectively, at an infusion rate of Ang II, 30 ng kg(-1) min(-1)). When evaluated over the range of 1-30 ng kg(-1) min(-1), the effect of Ang II on GFR and Uv were statistically significant (P < 0.05), but on UNaV did not quite achieve statistical significance (P=0.066). However, there was no associated change in FENa observed, suggesting a non-tubular site of interaction between Ang II and NO. 5. In contrast to its effects after pretreatment with L-NAME alone, Ang II (1-30 ng kg(-1) min(-1)) failed to reduce renal vascular conductance in rats pretreated with the combination of L-NAME and the selective angiotensin AT1 receptor antagonist, GR117289 (1 mg kg(-1) i.v.). This suggests that the renal vascular effects of Ang II are mediated through AT1 receptors. Over the same dose range, Ang II also failed to significantly reduce GFR or Uv. 6. In conclusion, the renal haemodynamic effects of Ang II in the rat kidney appear to be modulated by cyclooxygenase-derived prostaglandins and NO. The precise site(s) of such an interaction cannot be determined from the present data, but the data suggest complex interactions at the level of the glomerulus.


Subject(s)
Angiotensin II/pharmacology , Kidney/drug effects , Nitric Oxide/physiology , Prostaglandins/physiology , Angiotensin II/administration & dosage , Animals , Enzyme Inhibitors/pharmacology , Indomethacin/pharmacology , Infusions, Intra-Arterial , Kidney/physiology , Male , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Rats , Rats, Wistar , Renal Artery
3.
Brain Res ; 775(1-2): 74-80, 1997 Nov 14.
Article in English | MEDLINE | ID: mdl-9439830

ABSTRACT

The present study has examined the involvement of sensory neurotransmitters in activating neurones in the trigeminal nucleus caudalis following stimulation of the trigeminovascular system in anaesthetised guinea-pigs. Electrical stimulation of the right trigeminal ganglion produced a unilateral expression of Fos-like immunoreactivity (Fos-LI) in the trigeminal nucleus caudalis. The tachykinin NK1 receptor antagonist, GR205171 (100 micrograms/kg i.v.) and the N-methyl-D-aspartate (NMDA) receptor antagonist, MK-801 (1 mg/kg i.v.) each inhibited expression of Fos-LI following electrical stimulation. The calcitonin gene-related peptide (CGRP) receptor antagonist, CGRP8-37 (1.3 mg/kg i.v.), administered following rostral intracarotid infusion of mannitol to disrupt the blood-brain barrier, tended to reduce Fos-LI evoked by electrical stimulation, although this failed to reach statistical significance. Capsaicin (10 nmol in 0.1 ml), administered intracisternally, produced a bilateral expression of Fos-LI in the trigeminal nucleus caudalis. This expression was unaffected by the peripherally acting NK1 receptor antagonist, GR82334 (0.2 mg/kg i.v.) or CGRP8-37 (1.3 mg/kg i.v.). The centrally penetrant NK1 receptor antagonist, GR205171 (100 micrograms/kg i.v.), inhibited significantly Fos-LI evoked by intracisternal capsaicin administration. It is concluded that the sensory neurotransmitters, substance P and glutamate are released centrally following activation of the trigeminovascular system and that each may be involved in activation of cells in the trigeminal nucleus caudalis.


Subject(s)
Proto-Oncogene Proteins c-fos/biosynthesis , Trigeminal Nucleus, Spinal/blood supply , Trigeminal Nucleus, Spinal/metabolism , Animals , Blood Pressure/drug effects , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide Receptor Antagonists , Electric Stimulation , Glutamic Acid/metabolism , Guinea Pigs , Heart Rate/drug effects , Male , Neurokinin-1 Receptor Antagonists , Neurotransmitter Agents/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Regional Blood Flow/physiology , Substance P/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...