Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Phys Med ; 96: 101-113, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35276403

ABSTRACT

PURPOSE: Monte Carlo modelling of SPECT imaging in Molecular Radiotherapy can improve activity quantification. Until now, SPECT modelling with GATE only considered circular orbit (CO) acquisitions. This cannot reproduce auto-contour acquisitions, where the detector head moves close to the patient to improve image resolution. The aim of this work is to develop and validate an auto-contouring step-and-shoot acquisition mode for GATE SPECT modelling. METHODS: 177Lu and 131I SPECT experimental acquisitions performed on a Siemens Symbia T2 and GE Discovery 670 gamma camera, respectively, were modelled. SPECT projections were obtained for a cylindrical Jaszczak phantom and a lung and spine phantom. Detector head parameters (radial positions and acquisition angles) were extracted from the experimental projections to model the non-circular orbit (NCO) detector motion. The gamma camera model was validated against the experimental projections obtained with the cylindrical Jaszczak (177Lu) and lung and spine phantom (131I). Then, 177Lu and 131I CO and NCO SPECT projections were simulated to validate the impact of explicit NCO modelling on simulated projections. RESULTS: Experimental and simulated SPECT images were compared using the gamma index, and were in good agreement with gamma index passing rate (GIPR) and gammaavg of 96.27%, 0.242 (177Lu) and 92.89%, 0.36 (131I). Then, simulated 177Lu and 131I CO and NCO SPECT projections were compared. The GIPR, gammaavg between the two gamma camera motions was 99.85%, 0.108 for 177Lu and 75.58%, 0.6 for 131I. CONCLUSION: This work thereby justifies the need for auto-contouring modelling for isotopes with high septal penetration.


Subject(s)
Iodine Radioisotopes , Tomography, Emission-Computed, Single-Photon , Gamma Cameras , Humans , Iodine Radioisotopes/therapeutic use , Monte Carlo Method , Phantoms, Imaging , Tomography, Emission-Computed, Single-Photon/methods
2.
Phys Med ; 85: 24-31, 2021 May.
Article in English | MEDLINE | ID: mdl-33957577

ABSTRACT

PURPOSE: Patient-specific dosimetry in MRT relies on quantitative imaging, pharmacokinetic assessment and absorbed dose calculation. The DosiTest project was initiated to evaluate the uncertainties associated with each step of the clinical dosimetry workflow through a virtual multicentric clinical trial. This work presents the generation of simulated clinical SPECT datasets based on GATE Monte Carlo modelling with its corresponding experimental CT image, which can subsequently be processed by commercial image workstations. METHODS: This study considers a therapy cycle of 6.85 GBq 177Lu-labelled DOTATATE derived from an IAEA-Coordinated Research Project (E23005) on "Dosimetry in Radiopharmaceutical therapy for personalised patient treatment". Patient images were acquired on a GE Infinia-Hawkeye 4 gamma camera using a medium energy (ME) collimator. Simulated SPECT projections were generated based on experimental time points and validated against experimental SPECT projections using flattened profiles and gamma index. The simulated projections were then incorporated into the patient SPECT/CT DICOM envelopes for processing and their reconstruction within a commercial image workstation. RESULTS: Gamma index passing rate (2% - 1 pixel criteria) between 95 and 98% and average gamma between 0.28 and 0.35 among different time points revealed high similarity between simulated and experimental images. Image reconstruction of the simulated projections was successful on HERMES and Xeleris workstations, a major step forward for the initiation of a multicentric virtual clinical dosimetry trial based on simulated SPECT/CT images. CONCLUSIONS: Realistic 177Lu patient SPECT projections were generated in GATE. These modelled datasets will be circulated to different clinical departments to perform dosimetry in order to assess the uncertainties in the entire dosimetric chain.


Subject(s)
Radiometry , Tomography, Emission-Computed, Single-Photon , Gamma Cameras , Humans , Monte Carlo Method , Phantoms, Imaging , Single Photon Emission Computed Tomography Computed Tomography
3.
Med Phys ; 47(9): 4602-4615, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32632928

ABSTRACT

PURPOSE: The aim of this study was to quantitatively compare five commercial dosimetric software platforms based on the analysis of clinical datasets of patients who benefited from peptide receptor radionuclide therapy (PRRT) with 177 Lu-DOTATATE (LUTATHERA® ). METHODS: The dosimetric analysis was performed on two patients during two cycles of PRRT with 177 Lu. Single photon emission computed tomography/computed tomography images were acquired at 4, 24, 72, and 192 h post injection. Reconstructed images were generated using Dosimetry Toolkit® (DTK) from Xeleris™ and HybridRecon-Oncology version_1.3_Dicom (HROD) from HERMES. Reconstructed images using DTK were analyzed using the same software to calculate time-integrated activity coefficients (TIAC), and mean absorbed doses were estimated using OLINDA/EXM V1.0 with mass correction. Reconstructed images from HROD were uploaded into PLANET® OncoDose from DOSIsoft, STRATOS from Phillips, Hybrid Dosimetry Module™ from HERMES, and SurePlan™ MRT from MIM. Organ masses, TIACs, and mean absorbed doses were calculated from each application using their recommendations. RESULTS: The majority of organ mass estimates varied by <9.5% between all platforms. The highest variability for TIAC results between platforms was seen for the kidneys (28.2%) for the two patients and the two treatment cycles. Relative standard deviations in mean absorbed doses were slightly higher compared with those observed for TIAC, but remained of the same order of magnitude between all platforms. CONCLUSIONS: When applying a similar processing approach, results obtained were of the same order of magnitude regardless of the platforms used. However, the comparison of the performances of currently available platforms is still difficult as they do not all address the same parts of the dosimetric analysis workflow. In addition, the way in which data are handled in each part of the chain from data acquisition to absorbed doses may be different, which complicates the comparison exercise. Therefore, the dissemination of commercial solutions for absorbed dose calculation calls for the development of tools and standards allowing for the comparison of the performances between dosimetric software platforms.


Subject(s)
Neuroendocrine Tumors , Humans , Neuroendocrine Tumors/diagnostic imaging , Neuroendocrine Tumors/radiotherapy , Octreotide/therapeutic use , Radioisotopes , Radiopharmaceuticals , Receptors, Peptide , Software
4.
Eur J Prosthodont Restor Dent ; 24(2): 71-7, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27424338

ABSTRACT

The effect of a radiation positioning stent (RPS) in radiation dosage reduction to the opposing jaw and maintenance of mouth opening was audited. 55 Head and Neck cancer patients who received radiotherapy were reviewed. Radiation dosages at similar points in the primary/opposing jaws were measured along with the mouth opening. Results showed a significant reduction in the radiation dosage to the opposing jaw in patients given the RPS. Mouth opening was generally maintained in patients given the RPS (77.7% improvement in mouth opening) compared to patients without RPS. Patients undergoing radiotherapy who had an RPS showed a significant reduction in radiation dosage to the opposing jaw and maintained their mouth opening in the short-term.


Subject(s)
Head and Neck Neoplasms/radiotherapy , Mandible/radiation effects , Maxilla/radiation effects , Mouth/physiology , Radiation Dosage , Radiation Protection/instrumentation , Stents , Carcinoma, Squamous Cell/radiotherapy , Cohort Studies , Dental Audit , Equipment Design , Humans , Jaw Relation Record/instrumentation , Mouth Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...