Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
PLoS Genet ; 18(11): e1010485, 2022 11.
Article in English | MEDLINE | ID: mdl-36350851

ABSTRACT

Telomerase activity is the principal telomere maintenance mechanism in human cancers, however 15% of cancers utilise a recombination-based mechanism referred to as alternative lengthening of telomeres (ALT) that leads to long and heterogenous telomere length distributions. Loss-of-function mutations in the Alpha Thalassemia/Mental Retardation Syndrome X-Linked (ATRX) gene are frequently found in ALT cancers. Here, we demonstrate that the loss of ATRX, coupled with telomere dysfunction during crisis, is sufficient to initiate activation of the ALT pathway and that it confers replicative immortality in human fibroblasts. Additionally, loss of ATRX combined with a telomere-driven crisis in HCT116 epithelial cancer cells led to the initiation of an ALT-like pathway. In these cells, a rapid and precise telomeric elongation and the induction of C-circles was observed; however, this process was transient and the telomeres ultimately continued to erode such that the cells either died or the escape from crisis was associated with telomerase activation. In both of these instances, telomere sequencing revealed that all alleles, irrespective of whether they were elongated, were enriched in variant repeat types, that appeared to be cell-line specific. Thus, our data show that the loss of ATRX combined with telomere dysfunction during crisis induces the ALT pathway in fibroblasts and enables a transient activation of ALT in epithelial cells.


Subject(s)
Neoplasms , Telomerase , alpha-Thalassemia , Humans , Telomerase/genetics , Telomerase/metabolism , Telomere Homeostasis/genetics , X-linked Nuclear Protein/genetics , alpha-Thalassemia/genetics , Telomere/genetics , Telomere/metabolism
2.
NAR Cancer ; 4(3): zcac020, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35774233

ABSTRACT

DNA polymerase theta (POLQ) is a principal component of the alternative non-homologous end-joining (ANHEJ) DNA repair pathway that ligates DNA double-strand breaks. Utilizing independent models of POLQ insufficiency during telomere-driven crisis, we found that POLQ - /- cells are resistant to crisis-induced growth deceleration despite sustaining inter-chromosomal telomere fusion frequencies equivalent to wild-type (WT) cells. We recorded longer telomeres in POLQ - / - than WT cells pre- and post-crisis, notwithstanding elevated total telomere erosion and fusion rates. POLQ - /- cells emerging from crisis exhibited reduced incidence of clonal gross chromosomal abnormalities in accordance with increased genetic heterogeneity. High-throughput sequencing of telomere fusion amplicons from POLQ-deficient cells revealed significantly raised frequencies of inter-chromosomal fusions with correspondingly depreciated intra-chromosomal recombinations. Long-range interactions culminating in telomere fusions with centromere alpha-satellite repeats, as well as expansions in HSAT2 and HSAT3 satellite and contractions in ribosomal DNA repeats, were detected in POLQ - / - cells. In conjunction with the expanded telomere lengths of POLQ - /- cells, these results indicate a hitherto unrealized capacity of POLQ for regulation of repeat arrays within the genome. Our findings uncover novel considerations for the efficacy of POLQ inhibitors in clinical cancer interventions, where potential genome destabilizing consequences could drive clonal evolution and resistant disease.

3.
Nucleic Acids Res ; 50(9): e53, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35100420

ABSTRACT

Structural variation (SV) plays a fundamental role in genome evolution and can underlie inherited or acquired diseases such as cancer. Long-read sequencing technologies have led to improvements in the characterization of structural variants (SVs), although paired-end sequencing offers better scalability. Here, we present dysgu, which calls SVs or indels using paired-end or long reads. Dysgu detects signals from alignment gaps, discordant and supplementary mappings, and generates consensus contigs, before classifying events using machine learning. Additional SVs are identified by remapping of anomalous sequences. Dysgu outperforms existing state-of-the-art tools using paired-end or long-reads, offering high sensitivity and precision whilst being among the fastest tools to run. We find that combining low coverage paired-end and long-reads is competitive in terms of performance with long-reads at higher coverage values.


Subject(s)
Genomic Structural Variation , Software , High-Throughput Nucleotide Sequencing , INDEL Mutation , Sequence Analysis, DNA
4.
Hum Genet ; 140(6): 945-955, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33709208

ABSTRACT

Telomere biology disorders are complex clinical conditions that arise due to mutations in genes required for telomere maintenance. Telomere length has been utilised as part of the diagnostic work-up of patients with these diseases; here, we have tested the utility of high-throughput STELA (HT-STELA) for this purpose. HT-STELA was applied to a cohort of unaffected individuals (n = 171) and a retrospective cohort of mutation carriers (n = 172). HT-STELA displayed a low measurement error with inter- and intra-assay coefficient of variance of 2.3% and 1.8%, respectively. Whilst telomere length in unaffected individuals declined as a function of age, telomere length in mutation carriers appeared to increase due to a preponderance of shorter telomeres detected in younger individuals (< 20 years of age). These individuals were more severely affected, and age-adjusted telomere length differentials could be used to stratify the cohort for overall survival (Hazard Ratio = 5.6 (1.5-20.5); p < 0.0001). Telomere lengths of asymptomatic mutation carriers were shorter than controls (p < 0.0001), but longer than symptomatic mutation carriers (p < 0.0001) and telomere length heterogeneity was dependent on the diagnosis and mutational status. Our data show that the ability of HT-STELA to detect short telomere lengths, that are not readily detected with other methods, means it can provide powerful diagnostic discrimination and prognostic information. The rapid format, with a low measurement error, demonstrates that HT-STELA is a new high-quality laboratory test for the clinical diagnosis of an underlying telomeropathy.


Subject(s)
Bone Marrow Failure Disorders/diagnosis , Dyskeratosis Congenita/diagnosis , Fetal Growth Retardation/diagnosis , Genetic Carrier Screening/methods , Intellectual Disability/diagnosis , Microcephaly/diagnosis , Telomere/pathology , Adolescent , Adult , Age Factors , Aged , Asymptomatic Diseases , Bone Marrow Failure Disorders/genetics , Bone Marrow Failure Disorders/pathology , Case-Control Studies , Child , Child, Preschool , Dyskeratosis Congenita/genetics , Dyskeratosis Congenita/pathology , Female , Fetal Growth Retardation/genetics , Fetal Growth Retardation/pathology , Heterozygote , Humans , Infant , Intellectual Disability/genetics , Intellectual Disability/pathology , Male , Microcephaly/genetics , Microcephaly/pathology , Middle Aged , Severity of Illness Index , Survival Analysis , Telomere/metabolism , Telomere Homeostasis
5.
NAR Cancer ; 3(1): zcaa044, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33447828

ABSTRACT

Identifying attributes that distinguish pre-malignant from senescent cells provides opportunities for targeted disease eradication and revival of anti-tumour immunity. We modelled a telomere-driven crisis in four human fibroblast lines, sampling at multiple time points to delineate genomic rearrangements and transcriptome developments that characterize the transition from dynamic proliferation into replicative crisis. Progression through crisis was associated with abundant intra-chromosomal telomere fusions with increasing asymmetry and reduced microhomology usage, suggesting shifts in DNA repair capacity. Eroded telomeres also fused with genomic loci actively engaged in transcription, with particular enrichment in long genes. Both gross copy number alterations and transcriptional responses to crisis likely underpin the elevated frequencies of telomere fusion with chromosomes 9, 16, 17, 19 and most exceptionally, chromosome 12. Juxtaposition of crisis-regulated genes with loci undergoing de novo recombination exposes the collusive contributions of cellular stress responses to the evolving cancer genome.

6.
Trends Genet ; 36(5): 347-359, 2020 05.
Article in English | MEDLINE | ID: mdl-32294415

ABSTRACT

When cells progress to malignancy, they must overcome a final telomere-mediated proliferative lifespan barrier called replicative crisis. Crisis is characterized by extensive telomere fusion that drives widespread genomic instability, mitotic arrest, hyperactivation of autophagy, and cell death. Recently, it has become apparent that that the resolution of dicentric chromosomes, which arise from telomere fusions during crisis, can initiate a sequence of events that leads to chromothripsis, a form of extreme genomic catastrophe. Chromothripsis is characterized by localized genomic regions containing tens to thousands of rearrangements and it is becoming increasingly apparent that chromothripsis occurs widely across tumor types and has a clinical impact. Here we discuss how telomere dysfunction can initiate genomic complexity and the emerging mechanisms of chromothripsis.


Subject(s)
Chromosome Disorders/genetics , Genomic Instability/genetics , Neoplasms/genetics , Telomere/genetics , Chromosome Disorders/pathology , Chromothripsis , DNA Replication/genetics , Genomics , Humans , Mutation , Neoplasms/pathology
7.
Genome Res ; 29(5): 737-749, 2019 05.
Article in English | MEDLINE | ID: mdl-30872351

ABSTRACT

Telomere erosion, dysfunction, and fusion can lead to a state of cellular crisis characterized by large-scale genome instability. We investigated the impact of a telomere-driven crisis on the structural integrity of the genome by undertaking whole-genome sequence analyses of clonal populations of cells that had escaped crisis. Quantification of large-scale structural variants revealed patterns of rearrangement consistent with chromothripsis but formed in the absence of functional nonhomologous end-joining pathways. Rearrangements frequently consisted of short fragments with complex mutational patterns, with a repair topology that deviated from randomness showing preferential repair to local regions or exchange between specific loci. We find evidence of telomere involvement with an enrichment of fold-back inversions demarcating clusters of rearrangements. Our data suggest that chromothriptic rearrangements caused by a telomere crisis arise via a replicative repair process involving template switching.


Subject(s)
Chromothripsis , Genomic Instability , Telomere/genetics , Chromosome Inversion/genetics , DNA Copy Number Variations/genetics , DNA End-Joining Repair/genetics , Genomic Structural Variation/genetics , HCT116 Cells , Humans , Mutation , Neoplasms/genetics , Replication Origin/genetics , Telomere/metabolism , Telomere/physiology , Whole Genome Sequencing
9.
Nucleic Acids Res ; 47(5): 2402-2424, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30590694

ABSTRACT

Fusion of critically short or damaged telomeres is associated with the genomic rearrangements that support malignant transformation. We have demonstrated the fundamental contribution of DNA ligase 4-dependent classical non-homologous end-joining to long-range inter-chromosomal telomere fusions. In contrast, localized genomic recombinations initiated by sister chromatid fusion are predominantly mediated by alternative non-homologous end-joining activity that may employ either DNA ligase 3 or DNA ligase 1. In this study, we sought to discriminate the relative involvement of these ligases in sister chromatid telomere fusion through a precise genetic dissociation of functional activity. We have resolved an essential and non-redundant role for DNA ligase 1 in the fusion of sister chromatids bearing targeted double strand DNA breaks that is entirely uncoupled from its requisite engagement in DNA replication. Importantly, this fusogenic repair occurs in cells fully proficient for non-homologous end-joining and is not compensated by DNA ligases 3 or 4. The dual functions of DNA ligase 1 in replication and non-homologous end-joining uniquely position and capacitate this ligase for DNA repair at stalled replication forks, facilitating mitotic progression.


Subject(s)
Chromatids/genetics , DNA End-Joining Repair/genetics , DNA Ligase ATP/genetics , Mitosis/genetics , DNA Breaks, Double-Stranded , DNA Repair/genetics , DNA Replication/genetics , G2 Phase Cell Cycle Checkpoints/genetics , HCT116 Cells , Humans , Poly-ADP-Ribose Binding Proteins/genetics , Sister Chromatid Exchange/genetics , Telomere/genetics
10.
Int J Mol Sci ; 19(2)2018 Feb 06.
Article in English | MEDLINE | ID: mdl-29415479

ABSTRACT

Telomeres are progressively eroded during repeated rounds of cell division due to the end replication problem but also undergo additional more substantial stochastic shortening events. In most cases, shortened telomeres induce a cell-cycle arrest or trigger apoptosis, although for those cells that bypass such signals during tumour progression, a critical length threshold is reached at which telomere dysfunction may ensue. Dysfunction of the telomere nucleoprotein complex can expose free chromosome ends to the DNA double-strand break (DSB) repair machinery, leading to telomere fusion with both telomeric and non-telomeric loci. The consequences of telomere fusions in promoting genome instability have long been appreciated through the breakage-fusion-bridge (BFB) cycle mechanism, although recent studies using high-throughput sequencing technologies have uncovered evidence of involvement in a wider spectrum of genomic rearrangements including chromothripsis. A critical step in cancer progression is the transition of a clone to immortality, through the stabilisation of the telomere repeat array. This can be achieved via the reactivation of telomerase, or the induction of the alternative lengthening of telomeres (ALT) pathway. Whilst telomere dysfunction may promote genome instability and tumour progression, by limiting the replicative potential of a cell and enforcing senescence, telomere shortening can act as a tumour suppressor mechanism. However, the burden of senescent cells has also been implicated as a driver of ageing and age-related pathology, and in the promotion of cancer through inflammatory signalling. Considering the critical role of telomere length in governing cancer biology, we review questions related to the prognostic value of studying the dynamics of telomere shortening and fusion, and discuss mechanisms and consequences of telomere-induced genome rearrangements.


Subject(s)
Cell Transformation, Neoplastic/genetics , Genomics , Neoplasms/genetics , Telomere Homeostasis , Telomere/genetics , Animals , Cell Transformation, Neoplastic/metabolism , Evolution, Molecular , Genomic Instability , Genomics/methods , Humans , Neoplasms/metabolism , Prognosis , Telomerase/metabolism , Telomere Shortening
11.
Curr Pharm Des ; 19(16): 2878-94, 2013.
Article in English | MEDLINE | ID: mdl-23140451

ABSTRACT

The insides of cells can be viewed as a treasure trove of targets for therapeutic intervention of diseases or as deposits for contrasting agents. Increasingly the molecules that need to be delivered to the inside of cells for these purposes are macromolecular and membrane impermeable. Cell penetrating peptides (CPPs) have proven abilities to deliver a range of macromolecular cargo into cells thus raising their profile as potential delivery vectors for wide-ranging applications. There is evidence to suggest that CPPs first enter cells through endocytosis and that cytosolic delivery is mediated across endolysosomal membranes. Their capacity to do this, over direct plasma membrane translocation, is likely to depend on the nature and size of the cargo. Cells use a range of endocytic routes to facilitate entry from well characterised pathways regulated by clathrin to more recently discovered and less characterised pathways regulated by clathrin independent mechanisms. These are likely to determine the intracellular fate of cell delivery vectors including those based on cell penetrating peptides. Thus gaining accurate knowledge of their endocytic uptake and traffic is an important characterisation criteria for progress in this field. This review describes the different endocytic pathways that have been identified in mammalian cells and specific reports that have studied the uptake mechanisms and endocytic traffic of cell penetrating peptides and their associated cargo. These cargoes range from short peptides to an increasing library of nanoparticles such as quantum dots, liposomes and polymeric dendrimers. The studies highlight the effectiveness of cell penetrating peptides for delivering these entities into a diverse array of cell types using different endocytic pathways. This is shown using microscopy based colocalisation analysis with the few specific endocytic probes available, and chemical inhibitors of endocytosis that suffer from lack of specificity. Overall, more specific probes, inhibitors and novel technologies are required for accurate characterisation of cellular dynamics of cell penetrating peptide conjugates thus allowing them to reach their full potential as vectors for therapeutics and other payloads.


Subject(s)
Cell-Penetrating Peptides/metabolism , Drug Delivery Systems , Nanoparticles , Animals , Cell Membrane/metabolism , Clathrin/metabolism , Contrast Media/administration & dosage , Cytosol/metabolism , Endocytosis , Humans , Lysosomes/metabolism , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...