Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Clin Cancer Res ; 41(1): 131, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35392965

ABSTRACT

BACKGROUND: Hypoxia is a hallmark of the tumor microenvironment (TME) and in addition to altering metabolism in cancer cells, it transforms tumor-associated stromal cells. Within the tumor stromal cell compartment, tumor-associated macrophages (TAMs) provide potent pro-tumoral support. However, TAMs can also be harnessed to destroy tumor cells by monoclonal antibody (mAb) immunotherapy, through antibody dependent cellular phagocytosis (ADCP). This is mediated via antibody-binding activating Fc gamma receptors (FcγR) and impaired by the single inhibitory FcγR, FcγRIIb. METHODS: We applied a multi-OMIC approach coupled with in vitro functional assays and murine tumor models to assess the effects of hypoxia inducible factor (HIF) activation on mAb mediated depletion of human and murine cancer cells. For mechanistic assessments, siRNA-mediated gene silencing, Western blotting and chromatin immune precipitation were utilized to assess the impact of identified regulators on FCGR2B gene transcription. RESULTS: We report that TAMs are FcγRIIbbright relative to healthy tissue counterparts and under hypoxic conditions, mononuclear phagocytes markedly upregulate FcγRIIb. This enhanced FcγRIIb expression is transcriptionally driven through HIFs and Activator protein 1 (AP-1). Importantly, this phenotype reduces the ability of macrophages to eliminate anti-CD20 monoclonal antibody (mAb) opsonized human chronic lymphocytic leukemia cells in vitro and EL4 lymphoma cells in vivo in human FcγRIIb+/+ transgenic mice. Furthermore, post-HIF activation, mAb mediated blockade of FcγRIIb can partially restore phagocytic function in human monocytes. CONCLUSION: Our findings provide a detailed molecular and cellular basis for hypoxia driven resistance to antitumor mAb immunotherapy, unveiling a hitherto unexplored aspect of the TME. These findings provide a mechanistic rationale for the modulation of FcγRIIb expression or its blockade as a promising strategy to enhance approved and novel mAb immunotherapies.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Receptors, IgG , Animals , Antibodies, Monoclonal/pharmacology , Humans , Hypoxia/metabolism , Immunotherapy , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Macrophages/metabolism , Mice , Receptors, IgG/genetics , Receptors, IgG/metabolism , Tumor Microenvironment
2.
Blood Adv ; 4(13): 2886-2898, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32589730

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) patients are typically treated with immunochemotherapy containing rituximab (rituximab, cyclophosphamide, hydroxydaunorubicin-vincristine (Oncovin), and prednisone [R-CHOP]); however, prognosis is extremely poor if R-CHOP fails. To identify genetic mechanisms contributing to primary or acquired R-CHOP resistance, we performed target-panel sequencing of 135 relapsed/refractory DLBCLs (rrDLBCLs), primarily comprising circulating tumor DNA from patients on clinical trials. Comparison with a metacohort of 1670 diagnostic DLBCLs identified 6 genes significantly enriched for mutations upon relapse. TP53 and KMT2D were mutated in the majority of rrDLBCLs, and these mutations remained clonally persistent throughout treatment in paired diagnostic-relapse samples, suggesting a role in primary treatment resistance. Nonsense and missense mutations affecting MS4A1, which encodes CD20, are exceedingly rare in diagnostic samples but show recurrent patterns of clonal expansion following rituximab-based therapy. MS4A1 missense mutations within the transmembrane domains lead to loss of CD20 in vitro, and patient tumors harboring these mutations lacked CD20 protein expression. In a time series from a patient treated with multiple rounds of therapy, tumor heterogeneity and minor MS4A1-harboring subclones contributed to rapid disease recurrence, with MS4A1 mutations as founding events for these subclones. TP53 and KMT2D mutation status, in combination with other prognostic factors, may be used to identify high-risk patients prior to R-CHOP for posttreatment monitoring. Using liquid biopsies, we show the potential to identify tumors with loss of CD20 surface expression stemming from MS4A1 mutations. Implementation of noninvasive assays to detect such features of acquired treatment resistance may allow timely transition to more effective treatment regimens.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Lymphoma, Large B-Cell, Diffuse , Antibodies, Monoclonal, Murine-Derived , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Humans , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Rituximab/therapeutic use
3.
Immunity ; 49(5): 958-970.e7, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30446386

ABSTRACT

The costimulatory receptor 4-1BB is expressed on activated immune cells, including activated T cells. Antibodies targeting 4-1BB enhance the proliferation and survival of antigen-stimulated T cells in vitro and promote CD8 T cell-dependent anti-tumor immunity in pre-clinical cancer models. We found that T regulatory (Treg) cells infiltrating human or murine tumors expressed high amounts of 4-1BB. Intra-tumoral Treg cells were preferentially depleted by anti-4-1BB mAbs in vivo. Anti-4-1BB mAbs also promoted effector T cell agonism to promote tumor rejection. These distinct mechanisms were competitive and dependent on antibody isotype and FcγR availability. Administration of anti-4-1BB IgG2a, which preferentially depletes Treg cells, followed by either agonistic anti-4-1BB IgG1 or anti-PD-1 mAb augmented anti-tumor responses in multiple solid tumor models. An antibody engineered to optimize both FcγR-dependent Treg cell depleting capacity and FcγR-independent agonism delivered enhanced anti-tumor therapy. These insights into the effector mechanisms of anti-4-1BB mAbs lay the groundwork for translation into the clinic.


Subject(s)
Antibodies, Monoclonal/pharmacology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Immunomodulation/drug effects , Neoplasms/immunology , Neoplasms/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 9/antagonists & inhibitors , Animals , Gene Expression , Humans , Immunoglobulin G/pharmacology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mice , Mice, Knockout , Neoplasms/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
4.
Cancer Res ; 77(10): 2699-2711, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28363997

ABSTRACT

The tumor suppressor p53 is widely dysregulated in cancer and represents an attractive target for immunotherapy. Because of its intracellular localization, p53 is inaccessible to classical therapeutic monoclonal antibodies, an increasingly successful class of anticancer drugs. However, peptides derived from intracellular antigens are presented on the cell surface in the context of MHC I and can be bound by T-cell receptors (TCR). Here, we report the development of a novel antibody, T1-116C, that acts as a TCR mimic to recognize an HLA-A*0201-presented wild-type p53 T-cell epitope, p5365-73(RMPEAAPPV). The antibody recognizes a wide range of cancers, does not bind normal peripheral blood mononuclear cells, and can activate immune effector functions to kill cancer cells in vitroIn vivo, the antibody targets p5365-73 peptide-expressing breast cancer xenografts, significantly inhibiting tumor growth. This represents a promising new agent for future cancer immunotherapy. Cancer Res; 77(10); 2699-711. ©2017 AACR.


Subject(s)
Antibodies, Monoclonal/pharmacology , Molecular Mimicry , Neoplasms/genetics , Neoplasms/metabolism , Receptors, Antigen, T-Cell/antagonists & inhibitors , Tumor Suppressor Protein p53/genetics , Animals , Antibodies, Monoclonal/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Cell Line, Tumor , Disease Models, Animal , Epitopes, T-Lymphocyte/immunology , Female , HLA-A2 Antigen/chemistry , HLA-A2 Antigen/immunology , HLA-A2 Antigen/metabolism , Humans , Immunophenotyping , Immunotherapy , Mice , Neoplasms/drug therapy , Neoplasms/immunology , Protein Binding , Protein Multimerization , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes, Cytotoxic/immunology , Tumor Burden/drug effects , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
5.
J Immunol ; 198(10): 3999-4011, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28404636

ABSTRACT

Immunotherapy using mAbs, such as rituximab, is an established means of treating hematological malignancies. Abs can elicit a number of mechanisms to delete target cells, including complement-dependent cytotoxicity, Ab-dependent cellular cytotoxicity, and Ab-dependent cellular phagocytosis. The inherent properties of the target molecule help to define which of these mechanisms are more important for efficacy. However, it is often unclear why mAb binding to different epitopes within the same target elicits different levels of therapeutic activity. To specifically address whether distance from the target cell membrane influences the aforementioned effector mechanisms, a panel of fusion proteins consisting of a CD20 or CD52 epitope attached to various CD137 scaffold molecules was generated. The CD137 scaffold was modified through the removal or addition of cysteine-rich extracellular domains to produce a panel of chimeric molecules that held the target epitope at different distances along the protein. It was shown that complement-dependent cytotoxicity and Ab-dependent cellular cytotoxicity favored a membrane-proximal epitope, whereas Ab-dependent cellular phagocytosis favored an epitope positioned further away. These findings were confirmed using reagents targeting the membrane-proximal or -distal domains of CD137 itself before investigating these properties in vivo, where a clear difference in the splenic clearance of transfected tumor cells was observed. Together, this work demonstrates how altering the position of the Ab epitope is able to change the effector mechanisms engaged and facilitates the selection of mAbs designed to delete target cells through specific effector mechanisms and provide more effective therapeutic agents.


Subject(s)
Antibodies, Monoclonal/immunology , Antibody-Dependent Cell Cytotoxicity , Cell Membrane/immunology , Epitopes/immunology , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal, Murine-Derived/immunology , Antigens, CD/genetics , Antigens, CD/immunology , Antigens, CD20/genetics , Antigens, CD20/immunology , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , CD52 Antigen , Cell Line, Tumor , Glycoproteins/genetics , Glycoproteins/immunology , Humans , Immunotherapy , Mice , Phagocytosis , Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
6.
J Clin Immunol ; 36 Suppl 1: 88-94, 2016 05.
Article in English | MEDLINE | ID: mdl-26922075

ABSTRACT

Monoclonal antibodies (mAb) are revolutionising the treatment of many different diseases. Given their differing mode of action compared to most conventional chemotherapeutics and small molecule inhibitors, they possess the potential to be independent of common modes of treatment resistance and can typically be combined readily with existing treatments without dose-limiting toxicity. However, treatments with mAb rarely result in cure and so a full understanding of how these reagents work and can be optimised is key for their subsequent improvement. Here we review how an understanding of the biology of the inhibitory Fc receptor, FcγRIIB (CD32B), is leading to the development of improved mAb treatments.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Immunomodulation , Immunotherapy , Receptors, IgG/metabolism , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibody-Dependent Cell Cytotoxicity/genetics , Antibody-Dependent Cell Cytotoxicity/immunology , Antigen-Antibody Complex/immunology , Antigen-Antibody Complex/metabolism , Antigens, CD20/immunology , Antigens, CD20/metabolism , Humans , Immunity , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Immunoglobulin G/pharmacology , Immunoglobulin G/therapeutic use , Immunotherapy/methods , Protein Binding , Protein Engineering , Receptors, IgG/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...