Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 26(12): 2667-78, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18020695

ABSTRACT

Extrapolating results of laboratory bioassays to streams is difficult, because conditions such as temperature and dissolved metal concentrations can change substantially on diel time scales. Field bioassays conducted for 96 h in two mining-affected streams compared the survival of hatchery-raised, metal-naïve westslope cutthroat trout (Oncorhynchus clarki lewisi) exposed to dissolved (0.1-microm filtration) metal concentrations that either exhibited the diel variation observed in streams or were controlled at a constant value. Cadmium and Zn concentrations in these streams increased each night by as much as 61 and 125%, respectively, and decreased a corresponding amount the next day, whereas Cu did not display a diel concentration cycle. In High Ore Creek (40 km south of Helena, MT, USA), survival (33%) after exposure to natural diel-fluctuating Zn concentrations (range, 214-634 microg/L; mean, 428 microg/L) was significantly (p = 0.008) higher than survival (14%) after exposure to a controlled, constant Zn concentration (422 microg/L). Similarly, in Dry Fork Belt Creek (70 km southeast of Great Falls, MT, USA), survival (75%) after exposure to diel-fluctuating Zn concentrations (range, 266-522 microg/L; mean, 399 microg/L) was significantly (p = 0.022) higher than survival (50%) in the constant-concentration treatment (392 microg/L). Survival likely was greater in these diel treatments, both because the periods of lower metal concentrations provided some relief for the fish and because toxicity during periods of higher metal concentrations was lessened by the simultaneous occurrence each night of lower water temperatures, which reduce the rate of metal uptake. Based on the present study, current water-quality criteria appear to be protective for streams with diel concentration cycles of Zn (and, perhaps, Cd) for the hydrologic conditions tested.


Subject(s)
Oncorhynchus , Rivers/chemistry , Trace Elements/analysis , Water Pollutants, Chemical/analysis , Animals , Environmental Monitoring/methods , Montana , Oncorhynchus/growth & development , Periodicity , Reproducibility of Results , Species Specificity , Time Factors , Toxicity Tests , Trace Elements/toxicity , Water Pollutants, Chemical/toxicity
2.
Sci Total Environ ; 373(1): 344-55, 2007 Feb 01.
Article in English | MEDLINE | ID: mdl-17175006

ABSTRACT

Diel variations of concentrations of unfiltered and filtered total Hg and filtered methyl Hg were documented during 24-h sampling episodes in water from Silver Creek, which drains a historical gold-mining district near Helena, Montana, and the Madison River, which drains the geothermal system of Yellowstone National Park. The concentrations of filtered methyl Hg had relatively large diel variations (increases of 68 and 93% from morning minima) in both streams. Unfiltered and filtered (0.1-microm filtration) total Hg in Silver Creek had diel concentration increases of 24% and 7%, respectively. In the Madison River, concentrations of unfiltered and filtered total Hg did not change during the sampling period. The concentration variation of unfiltered total Hg in Silver Creek followed the diel variation in suspended-particle concentration. The concentration variation of filtered total and methyl Hg followed the solar photocycle, with highest concentrations during the early afternoon and evening and lowest concentrations during the morning. None of the diel Hg variations correlated with diel variation in streamflow or major ion concentrations. The diel variation in filtered total Hg could have been produced by adsorption-desorption of Hg2+ or by reduction of Hg(II) to Hg0 and subsequent evasion of Hg0. The diel variation in filtered methyl Hg could have been produced by sunlight- and temperature-dependent methylation. This study is the first to examine diel Hg cycling in streams, and its results reinforce previous conclusions that diel trace-element cycling in streams is widespread but often not recognized and that parts of the biogeochemical Hg cycle respond quickly to the daily photocycle.


Subject(s)
Mercury/analysis , Methylmercury Compounds/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring , Filtration , Gold , Hot Springs , Hydrogen-Ion Concentration , Industrial Waste , Mining , Montana , Silver , Temperature , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...