Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(22): 23155-23171, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38854523

ABSTRACT

Ensuring a rapid and accurate identification of harmful bacteria is crucial in various fields including environmental monitoring, food safety, and clinical diagnostics. Conventional detection methods often suffer from limitations such as long analysis time, complexity, and the need for qualified personnel. Therefore, a lot of research effort is devoted to developing technologies with the potential to revolutionize the detection of pathogenic bacteria by offering rapid, sensitive, and user-friendly platforms for point-of-care analysis. In this light, biosensors have gained significant commercial attention in recent years due to their simplicity, portability, and rapid analysis capabilities. The purpose of this review is to identify a trend by analyzing which biosensor technologies have become commercially successful in the field of bacteria detection. Moreover, we highlight the characteristics that a biosensor must possess to finally arrive in the market and therefore in the hands of the end-user, and we present critical examples of the market applications of various technologies. The aim is to investigate the reason why certain technologies have achieved commercial success and extrapolate these trends to the future economic viability of a new subfield in the world of biosensing: the development of biomimetic sensor platforms. Therefore, an overview of recent advances in the field of biomimetic bacteria detection will be presented, after which the challenges that need to be addressed in the coming years to improve market penetration will be critically evaluated. We will zoom into the current shortcomings of biomimetic sensors based on imprinting technology and aptamers and try to come up with a recommendation for further development based on the trends observed from previous commercial success stories in biosensing.

2.
PLoS Negl Trop Dis ; 17(8): e0011535, 2023 08.
Article in English | MEDLINE | ID: mdl-37540724

ABSTRACT

Endemic in Brazil, visceral leishmaniasis (VL) is a zoonotic infection that is among the most important parasitic diseases transmitted by vectors. Dogs are the main reservoirs of canine leishmaniasis (CanL) and their identification is used in some countries as part of disease prevention and control measures in the canine and human population. In this context, serological tests are necessary, composed of antigens capable of correctly identifying infected dogs, minimizing the number of false-negative cases. This study aimed to identify more immunoreactive peptides derived from two previously described whole proteins (rDyn-1 and rKDDR-plus) and compare their performance to the control antigens rK39 and the crude extract for the detection of dogs infected with L. infantum, especially the asymptomatic ones. The three selected peptides and a mixture of them, along with the rDyn-1, rKDDR-plus, rK39, and crude extract antigens were evaluated using indirect ELISA with sera samples from 186 dogs with CanL, being asymptomatic (n = 50), symptomatic (n = 50), co-infected (n = 19), infected with Babesia sp. (n = 7), Ehrlichia sp. (n = 6), T. cruzi (n = 20) and uninfected (n = 34). The results showed that the rDyn-1 protein and the peptide mixture had the highest sensitivity (100% and 98.32%, respectively) and specificity (97.01 and 98.51, respectively). A high degree of kappa agreement was found for rDyn-1 protein (0.977), mixed peptides (0.965), rKDDR-plus protein (0.953), K-plus peptide 1 (0.930) and Dyn-1 peptide (0.893). The mixture of peptides showed the highest likelihood (65.87). The ELISA using the mixture of peptides and the rDyn-1 protein showed high performance for CanL serodiagnosis. More mix combinations of the peptides and additional extended field tests with a larger sample size are recommended.


Subject(s)
Chagas Disease , Dog Diseases , Leishmania infantum , Leishmaniasis, Visceral , Humans , Dogs , Animals , Antigens, Protozoan , Sensitivity and Specificity , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/veterinary , Leishmaniasis, Visceral/epidemiology , Peptides , Immunoblotting , Oligopeptides , Enzyme-Linked Immunosorbent Assay/methods , Serologic Tests/methods , Dog Diseases/epidemiology , Antibodies, Protozoan
3.
EJNMMI Res ; 13(1): 42, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37171631

ABSTRACT

By clearing GABA from the synaptic cleft, GABA transporters (GATs) play an essential role in inhibitory neurotransmission. Consequently, in vivo visualization of GATs can be a valuable diagnostic tool and biomarker for various psychiatric and neurological disorders. Not surprisingly, in recent years several research attempts to develop a radioligand have been conducted, but so far none have led to suitable radioligands that allow imaging of GATs. Here, we provide an overview of the radioligands that were developed with a focus on GAT1, since this is the most abundant transporter and most of the research concerns this GAT subtype. Initially, we focus on the field of GAT1 inhibitors, after which we discuss the development of GAT1 radioligands based on these inhibitors. We hypothesize that the radioligands developed so far have been unsuccessful due to the zwitterionic nature of their nipecotic acid moiety. To overcome this problem, the use of non-classical GAT inhibitors as basis for GAT1 radioligands or the use of carboxylic acid bioisosteres may be considered. As the latter structural modification has already been used in the field of GAT1 inhibitors, this option seems particularly viable and could lead to the development of more successful GAT1 radioligands in the future.

4.
ACS Sens ; 8(1): 353-362, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36599088

ABSTRACT

Pseudomonas aeruginosa is a ubiquitous multi-drug-resistant bacterium, capable of causing serious illnesses and infections. This research focuses on the development of a thermal sensor for the indirect detection of P. aeruginosa infection using molecularly imprinted polymers (MIPs). This was achieved by developing MIPs for the detection of pyocyanin, the main toxin secreted by P. aeruginosa. To this end, phenazine was used as a dummy template, evaluating several polymeric compositions to achieve a selective MIP for pyocyanin recognition. The sensitivity of the synthesized MIPs was investigated by UV-vis analysis, with the best composition having a maximum rebinding capacity of 30 µmol g-1 and an imprinting factor (IF) of 1.59. Subsequently, the MIP particles were immobilized onto planar aluminum chips using an adhesive layer, to perform thermal resistance measurements at clinically relevant concentrations of pyocyanin (1.4-9.8 µM), achieving a limit of detection (LoD) of 0.347 ± 0.027 µM. The selectivity of the sensor was also scrutinized by subjecting the receptor to potential interferents. Furthermore, the rebinding was demonstrated in King's A medium, highlighting the potential of the sensor for the indirect detection of P. aeruginosa in complex fluids. The research culminates in the demonstration of the MIP-based sensor's applicability for clinical diagnosis. To achieve this goal, an experiment was performed in which the sensor was exposed to pyocyanin-spiked saliva samples, achieving a limit of detection of 0.569 ± 0.063 µM and demonstrating that this technology is suitable to detect the presence of the toxin even at the very first stage of its production.


Subject(s)
Molecular Imprinting , Molecularly Imprinted Polymers , Pseudomonas aeruginosa , Pyocyanine , Electrochemical Techniques
5.
Acta Trop ; 239: 106827, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36610530

ABSTRACT

Visceral leishmaniasis (VL) is a fatal manifestation of an infection caused by intracellular protozoa of the Leishmania genus. In New World countries, VL is classified as a zoonotic disease with domestic dogs acting as its main reservoir. Asymptomatic dogs are as competent to transmit Leishmania to the vectors as symptomatic dogs, however current diagnostic tests are limited and present low sensitivity for this important group. The development of accurate tests is fundamental to the early diagnosis, treatment, and control of canine leishmaniasis. In this study, we investigated the use of a recombinant protein (dynamin-1-like protein, Dyn-1) from L. infantum, as a potential target antigen for leishmaniasis serodiagnosis in both symptomatic and asymptomatic dogs. The antigenic performance of the protein was evaluated by means of ELISA assays using sera from symptomatic (n = 25), asymptomatic (n = 34) and non-infected dogs (n = 36) using ELISA. In addition, sera from dogs experimentally infected with Trypanosoma cruzi (n = 49) and naturally infected with Babesia sp. (n = 8) were tested to evaluate possible cross-reactivity. A crude soluble antigen (CSA) of Leishmania was used as an antigen control and K39 and K26 were used as reference antigens because they are already widely used in commercial tests. rDyn-1-based assay showed the highest sensitivity (97%) compared to the antigens K39 (88%), K26 (86%) and crude extract (95%). The highest specificity among the tests was also obtained with the protein rDyn-1 (94%), compared with the other antigens K39 (81%), K26 (87%), and crude extract (77%). This study showed that the rDyn-1 ELISA assay was able to identify 100% of asymptomatic dogs, establishing its potential as a target for the diagnosis of canine leishmaniasis.


Subject(s)
Dog Diseases , Leishmania infantum , Leishmaniasis, Visceral , Animals , Dogs , Leishmania infantum/genetics , Dynamin I , Antigens, Protozoan/genetics , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/veterinary , Enzyme-Linked Immunosorbent Assay , Serologic Tests/veterinary , Dog Diseases/diagnosis , Dog Diseases/parasitology , Antibodies, Protozoan , Sensitivity and Specificity
6.
Food Chem ; 404(Pt B): 134653, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36327513

ABSTRACT

Accurate and fast on-site detection of harmful microorganisms in food products is a key preventive step to avoid food-borne illness and product recall. In this study, screen-printed electrodes (SPEs) were functionalized via a facile strategy with surface imprinted polymers (SIPs). The SIP-coated SPEs were used in combination with the heat transfer method (HTM) for the real-time detection of Escherichia coli. The sensor was tested in buffer, with a reproducible and sensitive response that attained a limit of detection of 180 CFU/mL. Furthermore, selectivity was assessed by analyzing the sensor's response to C. sakazakii, K. pneumoniae and S. aureus as analogue strains. Finally, the device was successfully used for the detection of E. coli in spiked milk as proof-of-application, requiring no additional sample preparation. These results suggest the proposed thermal biosensor possesses the potential of becoming a tool for routine, on-site monitoring of E. coli in food safety applications.


Subject(s)
Biosensing Techniques , Escherichia coli , Staphylococcus aureus , Electrodes , Biosensing Techniques/methods , Dairy Products , Limit of Detection
7.
Sensors (Basel) ; 24(1)2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38202993

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a class of materials that have been widely used in the industrial production of a wide range of products. After decades of bioaccumulation in the environment, research has demonstrated that these compounds are toxic and potentially carcinogenic. Therefore, it is essential to map the extent of the problem to be able to remediate it properly in the next few decades. Current state-of-the-art detection platforms, however, are lab based and therefore too expensive and time-consuming for routine screening. Traditional biosensor tests based on, e.g., lateral flow assays may struggle with the low regulatory levels of PFAS (ng/mL), the complexity of environmental matrices and the presence of coexisting chemicals. Therefore, a lot of research effort has been directed towards the development of biomimetic receptors and their implementation into handheld, low-cost sensors. Numerous research groups have developed PFAS sensors based on molecularly imprinted polymers (MIPs), metal-organic frameworks (MOFs) or aptamers. In order to transform these research efforts into tangible devices and implement them into environmental applications, it is necessary to provide an overview of these research efforts. This review aims to provide this overview and critically compare several technologies to each other to provide a recommendation for the direction of future research efforts focused on the development of the next generation of biomimetic PFAS sensors.


Subject(s)
Biomimetics , Fluorocarbons , Humans , Carcinogenesis , Carcinogens , Industry
8.
Foods ; 11(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36141032

ABSTRACT

In recent years, melamine-sensing technologies have increasingly gained attention, mainly due to the misuse of the molecule as an adulterant in milk and other foods. Molecularly imprinted polymers (MIPs) are ideal candidates for the recognition of melamine in real-life samples. The prepared MIP particles were incorporated into a thermally conductive layer via micro-contact deposition and its response towards melamine was analyzed using the heat-transfer method (HTM). The sensor displayed an excellent selectivity when analyzing the thermal response to other chemicals commonly found in foods, and its applicability in food safety was demonstrated after evaluation in untreated milk samples, demonstrating a limit of detection of 6.02 µM. As the EU/US melamine legal limit in milk of 2.5 mg/kg falls within the linear range of the sensor, it can offer an innovative solution for routine screening of milk samples in order to detect adulteration with melamine. The results shown in this work thus demonstrate the great potential of a low-cost thermal platform for the detection of food adulteration in complex matrices.

9.
ACS Sens ; 7(5): 1467-1475, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35537189

ABSTRACT

This work presents an imprinted polymer-based thermal biomimetic sensor for the detection of Escherichia coli. A novel and facile bacteria imprinting protocol for polydimethylsiloxane (PDMS) films was investigated, and these receptor layers were functionalized with graphene oxide (GO) in order to improve the overall sensitivity of the sensor. Upon the recognition and binding of the target to the densely imprinted polymers, a concentration-dependent measurable change in temperature was observed. The limit of detection attained for the sensor employing PDMS-GO imprints was 80 ± 10 CFU/mL, a full order lower than neat PDMS imprints (670 ± 140 CFU/mL), illustrating the beneficial effect of the dopant on the thermo-dynamical properties of the interfacial layer. A parallel benchmarking of the thermal sensor with a commercial impedance analyzer was performed in order to prove the possibility of using the developed PDMS-GO receptors with multiple readout platforms. Moreover, S. aureus, C. sakazakii and an additional E. coli strain were employed as analogue species for the assessment of the selectivity of the device. Finally, because of the potential that this biomimetic platform possesses as a low-cost, rapid, and on-site tool for monitoring E. coli contamination in food safety applications, spiked fruit juice was analyzed as a real sample. Reproducible and sensitive results fulfill the limit requirements of the applicable European microbiological regulation.


Subject(s)
Molecular Imprinting , Biomimetics , Dimethylpolysiloxanes , Escherichia coli , Graphite , Molecular Imprinting/methods , Polymers/chemistry , Staphylococcus aureus
10.
ACS Sens ; 6(12): 4515-4525, 2021 12 24.
Article in English | MEDLINE | ID: mdl-34825565

ABSTRACT

Glucose bio-sensing technologies have received increasing attention in the last few decades, primarily due to the fundamental role that glucose metabolism plays in diseases (e.g., diabetes). Molecularly imprinted polymers (MIPs) could offer an alternative means of analysis to a field that is traditionally dominated by enzyme-based devices, posing superior chemical stability, cost-effectiveness, and ease of fabrication. Their integration into sensing devices as recognition elements has been extensively studied with different readout methods such as quartz-crystal microbalance or impedance spectroscopy. In this work, a dummy imprinting approach is introduced, describing the synthesis and optimization of a MIP toward the sensing of glucose. Integration of this polymer into a thermally conductive receptor layer was achieved by micro-contact deposition. In essence, the MIP particles are pressed into a polyvinyl chloride adhesive layer using a polydimethylsiloxane stamp. The prepared layer is then evaluated with the so-called heat-transfer method, allowing the determination of the specificity and the sensitivity of the receptor layer. Furthermore, the selectivity was assessed by analyzing the thermal response after infusion with increasing concentrations of different saccharide analogues in phosphate-buffered saline (PBS). The obtained results show a linear range of the sensor of 0.0194-0.3300 mM for the detection of glucose in PBS. Finally, a potential application of the sensor was demonstrated by exposing the receptor layer to increasing concentrations of glucose in human urine samples, demonstrating a linear range of 0.0444-0.3300 mM. The results obtained in this paper highlight the applicability of the sensor both in terms of non-invasive glucose monitoring and for the analysis of food samples.


Subject(s)
Molecular Imprinting , Blood Glucose , Blood Glucose Self-Monitoring , Glucose , Humans , Molecularly Imprinted Polymers
11.
Biosensors (Basel) ; 11(10)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34677351

ABSTRACT

We demonstrate a novel way of creating three-dimensional microfluidic channels capable of following complex topographies. To this end, substrates with open channels and different geometries were 3D-printed, and the open channels were consecutively closed with a thermoplastic using a low-resolution vacuum-forming approach. This process allows the sealing of channels that are located on the surface of complex multiplanar topographies, as the thermoplastic aligns with the surface-shape (the macrostructure) of the substrate, while the microchannels remain mostly free of thermoplastic as their small channel size resists thermoplastic inflow. This new process was analyzed for its capability to consistently close different substrate geometries, which showed reliable sealing of angles >90°. Furthermore, the thermoplastic intrusion into channels of different widths was quantified, showing a linear effect of channel width and percentage of thermoplastic intrusion; ranging from 43.76% for large channels with 2 mm width to only 5.33% for channels with 500 µm channel width. The challenging sealing of substrate 'valleys', which are created when two large protrusions are adjacent to each other, was investigated and the correlation between protrusion distance and height is shown. Lastly, we present three application examples: a serpentine mixer with channels spun around a cuboid, increasing the usable surface area; a cuvette-inspired flow cell for a 2-MXP biosensor based on molecular imprinted polymers, fitting inside a standard UV/Vis-Spectrophotometer; and an adapter system that can be manufactured by one-sided injection molding and is self-sealed before usage. These examples demonstrate how this novel technology can be used to easily adapt microfluidic circuits for application in biosensor platforms.


Subject(s)
Microfluidics , Negative-Pressure Wound Therapy , Polymers , Printing, Three-Dimensional
12.
Polymers (Basel) ; 13(13)2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34279364

ABSTRACT

The scope of the presented research orientates itself towards the development of a Molecularly Imprinted Polymer (MIP)-based dye displacement assay for the colorimetric detection of the antibiotic amoxicillin in aqueous medium. With this in mind, the initial development of an MIP capable of such a task sets focus on monolithic bulk polymerization to assess monomer/crosslinker combinations that have potential towards the binding of amoxicillin. The best performing composition (based on specificity and binding capacity) is utilized in the synthesis of MIP particles by emulsion polymerization, yielding particles that prove to be more homogenous in size and morphology compared to that of the crushed monolithic MIP, which is an essential trait when it comes to the accuracy of the resulting assay. The specificity and selectivity of the emulsion MIP proceeds to be highlighted, demonstrating a higher affinity towards amoxicillin compared to other compounds of the aminopenicillin class (ampicillin and cloxacillin). Conversion of the polymeric receptor is then undertaken, identifying a suitable dye for the displacement assay by means of binding experiments with malachite green, crystal violet, and mordant orange. Once identified, the optimal dye is then loaded onto the synthetic receptor, and the displaceability of the dye deduced by means of a dose response experiment. Alongside the sensitivity, the selectivity of the assay is scrutinized against cloxacillin and ampicillin. Yielding a dye displacement assay that can be used (semi-)quantitatively in a rapid manner.

13.
Biosensors (Basel) ; 11(2)2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33670184

ABSTRACT

Foodborne illnesses represent high costs worldwide in terms of medical care and productivity. To ensure safety along the food chain, technologies that help to monitor and improve food preservation have emerged in a multidisciplinary context. These technologies focus on the detection and/or removal of either biological (e.g., bacteria, virus, etc.) or chemical (e.g., drugs and pesticides) safety hazards. Imprinted polymers are synthetic receptors able of recognizing both chemical and biological contaminants. While numerous reviews have focused on the use of these robust materials in extraction and separation applications, little bibliography summarizes the research that has been performed on their coupling to sensing platforms for food safety. The aim of this work is therefore to fill this gap and highlight the multidisciplinary aspects involved in the application of imprinting technology in the whole value chain ranging from IP preparation to integrated sensor systems for the specific recognition and quantification of chemical and microbiological contaminants in food samples.


Subject(s)
Molecular Imprinting , Polymers , Food Safety , Pesticides , Receptors, Artificial
14.
J Chem Educ ; 98(2): 439-444, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33583951

ABSTRACT

The need to develop interest in STEM (science, technology, engineering, and mathematics) skills in young pupils has driven many educational systems to include STEM as a subject in primary schools. In this work, a science kit aimed at children from 8 to 14 years old is presented as a support platform for an innovative and stimulating approach to STEM learning. The peculiar design of the kit, based on modular components, is aimed to help develop a multitude of skills in the young students, dividing the learning process into two phases. During phase 1 the pupils build the experimental setup and visualize the scientific phenomena, while in phase 2, they are introduced and challenged to understand the principles on which these phenomena are based, guided by a handbook. This approach aims at making the experience more inclusive, stimulating the interest and passion of the pupils for scientific subjects.

15.
Molecules ; 25(22)2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33182534

ABSTRACT

The rapid sensing of drug compounds has traditionally relied on antibodies, enzymes and electrochemical reactions. These technologies can frequently produce false positives/negatives and require specific conditions to operate. Akin to antibodies, molecularly imprinted polymers (MIPs) are a more robust synthetic alternative with the ability to bind a target molecule with an affinity comparable to that of its natural counterparts. With this in mind, the research presented in this article introduces a facile MIP-based dye displacement assay for the detection of (±) amphetamine in urine. The selective nature of MIPs coupled with a displaceable dye enables the resulting low-cost assay to rapidly produce a clear visual confirmation of a target's presence, offering huge commercial potential. The following manuscript characterizes the proposed assay, drawing attention to various facets of the sensor design and optimization. To this end, synthesis of a MIP tailored towards amphetamine is described, scrutinizing the composition and selectivity (ibuprofen, naproxen, 2-methoxphenidine, quetiapine) of the reported synthetic receptor. Dye selection for the development of the displacement assay follows, proceeded by optimization of the displacement process by investigating the time taken and the amount of MIP powder required for optimum displacement. An optimized dose-response curve is then presented, introducing (±) amphetamine hydrochloride (0.01-1 mg mL-1) to the engineered sensor and determining the limit of detection (LoD). The research culminates in the assay being used for the analysis of spiked urine samples (amphetamine, ibuprofen, naproxen, 2-methoxphenidine, quetiapine, bupropion, pheniramine, bromopheniramine) and evaluating its potential as a low-cost, rapid and selective method of analysis.


Subject(s)
Amphetamines/urine , Coloring Agents/chemistry , Molecularly Imprinted Polymers , Polymers/chemistry , Substance Abuse Detection/methods , Urine/chemistry , Amphetamine/urine , Brompheniramine/urine , Bupropion/urine , Dose-Response Relationship, Drug , Electrochemical Techniques , False Positive Reactions , Humans , Ibuprofen/urine , Limit of Detection , Molecular Imprinting , Naproxen/urine , Pheniramine/urine , Piperidines/urine , Powders , Quetiapine Fumarate/urine
16.
Sens Actuators B Chem ; 325: 128973, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33012991

ABSTRACT

Molecularly imprinted polymers (MIPs) have emerged over the past few decades as interesting synthetic alternatives due to their long-term chemical and physical stability and low-cost synthesis procedure. They have been integrated into many sensing platforms and assay formats for the detection of various targets, ranging from small molecules to macromolecular entities such as pathogens and whole cells. Despite the advantages MIPs have over natural receptors in terms of commercialization, the striking success stories of biosensor applications such as the glucose meter or the self-test for pregnancy have not been matched by MIP-based sensor or detection kits yet. In this review, we zoom in on the commercial potential of MIP technology and aim to summarize the latest developments in their commercialization and integration into sensors and assays with high commercial potential. We will also analyze which bottlenecks are inflicting with commercialization and how recent advances in commercial MIP synthesis could overcome these obstacles in order for MIPs to truly achieve their commercial potential in the near future.

17.
ACS Omega ; 5(33): 21054-21066, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32875242

ABSTRACT

A charge-transfer (CT) interaction between 1,3,5-trinitro-2,4-dimethylbenzene (TNX) and anionic phosphate is evaluated, yielding a high band electronic transfer interaction that can be observed as a distinct color change when phosphate is present in solution. The induced interaction was studied using 1H NMR, UV-visible, and Fourier transform infrared spectroscopies. The stoichiometric determination of the interaction was divined by means of continuous variation, applying the Schaeppi-Treadwell method to calculate the binding constant (k). Furthermore, the effect of the polarity of solvents toward the generation of the CT interaction was examined, with multiple solvents considered. Complex deconstruction studies were undertaken, examining the effects of water on complex destruction and understanding the volumes needed to hinder the CT interaction potency. Specificity and selectivity of the CT interaction were also studied against other biologically relevant species (CH3CH2OH, Na+, K+, Ca2+, Cl-, HCO3 -, F-, CH3COO-, and SO4 2-), assessing the capabilities of the assay to differentiate anionic species and counter cations that could act as interferences. The role of TNX concentration in CT formation was also analyzed, aiming to optimize the phosphate-sensing assay and improve its limit of detection. The sensing platform was subsequently used to study phosphate concentrations in urine samples to further understand its potential application in biomedical research. To validate the developed technique, urine samples were analyzed for their phosphate content with both the developed sensor and a validated vanadate-molybdate reagent. The results indicate that the sensing method is capable of accurately reporting elevated phosphate levels in urine samples in a rapid and sensitive manner, illustrating that the colorimetric test could be used as a prescreening test for conditions such as hyperphosphatemia or chronic kidney disease.

18.
Biosensors (Basel) ; 10(10)2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32987809

ABSTRACT

Point of care (PoC) diagnostics are at the focus of government initiatives, NGOs and fundamental research alike. In high-income countries, the hope is to streamline the diagnostic procedure, minimize costs and make healthcare processes more efficient and faster, which, in some cases, can be more a matter of convenience than necessity. However, in resource-limited settings such as low-income countries, PoC-diagnostics might be the only viable route, when the next laboratory is hours away. Therefore, it is especially important to focus research into novel diagnostics for these countries in order to alleviate suffering due to infectious disease. In this review, the current research describing the use of PoC diagnostics in resource-limited settings and the potential bottlenecks along the value chain that prevent their widespread application is summarized. To this end, we will look at literature that investigates different parts of the value chain, such as fundamental research and market economics, as well as actual use at healthcare providers. We aim to create an integrated picture of potential PoC barriers, from the first start of research at universities to patient treatment in the field. Results from the literature will be discussed with the aim to bring all important steps and aspects together in order to illustrate how effectively PoC is being used in low-income countries. In addition, we discuss what is needed to improve the situation further, in order to use this technology to its fullest advantage and avoid "leaks in the pipeline", when a promising device fails to take the next step of the valorization pathway and is abandoned.


Subject(s)
Point-of-Care Systems , Communicable Diseases , Health Resources , Humans , Monitoring, Physiologic , Point-of-Care Testing , Poverty
19.
ACS Sens ; 4(10): 2838-2845, 2019 10 25.
Article in English | MEDLINE | ID: mdl-31571480

ABSTRACT

This manuscript describes the production of molecularly imprinted polymer nanoparticles (nanoMIPs) for the cardiac biomarkers heart-fatty acid binding protein (H-FABP) and ST2 by solid-phase synthesis, and their use as synthetic antibodies in a multiplexed sensing platform. Analysis by surface plasmon resonance (SPR) shows that the affinity of the nanoMIPs is similar to that of commercially available antibodies. The particles are coated onto the surface of thermocouples and inserted into 3D-printed flow cells of different multiplexed designs. We demonstrate that it is possible to selectively detect both cardiac biomarkers within the physiologically relevant range. Furthermore, the developed sensor platform is the first example of a multiplex format of this thermal analysis technique which enables simultaneous measurements of two different compounds with minimal cross selectivity. The format where three thermocouples are positioned in parallel exhibits the highest sensitivity, which is explained by modeling the heat flow distribution within the flow cell. This design is used in further experiments and proof-of-application of the sensor platform is provided by measuring spiked fetal bovine serum samples. Because of the high selectivity, short measurement time, and low cost of this array format, it provides an interesting alternative to traditional immunoassays. The use of nanoMIPs enables a multimarker strategy, which has the potential to contribute to sustainable healthcare by improving the reliability of cardiac biomarker testing.


Subject(s)
Biosensing Techniques , Fatty Acid Binding Protein 3/blood , Interleukin-1 Receptor-Like 1 Protein/blood , Molecular Imprinting , Biomarkers/blood , Nanoparticles/chemistry , Surface Plasmon Resonance
20.
Macromol Biosci ; 19(7): e1900090, 2019 07.
Article in English | MEDLINE | ID: mdl-31166090

ABSTRACT

Given the major structural role phosphodiesters play in the organism it is surprising they have not been more widely adopted as a building block in sophisticated biomimetic hydrogels and other biomaterials. The potential benefits are substantial: phosphoester-based materials show excellent compatibility with blood, cells, and a remarkable resistance to protein adsorption that may trigger a foreign-body response. In this work, a novel class of phosphodiester-based ionic hydrogels is presented which are crosslinked via a phosphodiester moiety. The material shows good compatibility with blood, supports the growth and proliferation of tissue and presents opportunities for use as a drug release matrix as shown with fluorescent model compounds. The final gel is produced via base-induced elimination from a phosphotriester precursor, which is made by the free-radical polymerization of a phosphotriester crosslinker. This crosslinker is easily synthesized via multigram one-pot procedures out of common laboratory chemicals. Via the addition of various comonomers the properties of the final gel may be tuned leading to a wide range of novel applications for this exciting class of materials.


Subject(s)
Drug Liberation , Esters/chemistry , Hydrogels/chemistry , Tissue Scaffolds/chemistry , Animals , Dimethyl Sulfoxide/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Freeze Drying , Magnetic Resonance Spectroscopy , Materials Testing , Myocytes, Smooth Muscle/cytology , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...