Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4979, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862502

ABSTRACT

Nanomechanical oscillators offer numerous advantages for quantum technologies. Their integration with superconducting qubits shows promise for hardware-efficient quantum error-correction protocols involving superpositions of mechanical coherent states. Limitations of this approach include mechanical decoherence processes, particularly two-level system (TLS) defects, which have been widely studied using classical fields and detectors. In this manuscript, we use a superconducting qubit as a quantum sensor to perform phonon number-resolved measurements on a piezoelectrically coupled phononic crystal cavity. This enables a high-resolution study of mechanical dissipation and dephasing in coherent states of variable size ( n ¯ ≃ 1 - 10 phonons). We observe nonexponential relaxation and state size-dependent reduction of the dephasing rate, which we attribute to TLS. Using a numerical model, we reproduce the dissipation signatures (and to a lesser extent, the dephasing signatures) via emission into a small ensemble (N = 5) of rapidly dephasing TLS. Our findings comprise a detailed examination of TLS-induced phonon decoherence in the quantum regime.

3.
Nature ; 604(7906): 463-467, 2022 04.
Article in English | MEDLINE | ID: mdl-35444325

ABSTRACT

Precisely engineered mechanical oscillators keep time, filter signals and sense motion, making them an indispensable part of the technological landscape of today. These unique capabilities motivate bringing mechanical devices into the quantum domain by interfacing them with engineered quantum circuits. Proposals to combine microwave-frequency mechanical resonators with superconducting devices suggest the possibility of powerful quantum acoustic processors1-3. Meanwhile, experiments in several mechanical systems have demonstrated quantum state control and readout4,5, phonon number resolution6,7 and phonon-mediated qubit-qubit interactions8,9. At present, these acoustic platforms lack processors capable of controlling the quantum states of several mechanical oscillators with a single qubit and the rapid quantum non-demolition measurements of mechanical states needed for error correction. Here we use a superconducting qubit to control and read out the quantum state of a pair of nanomechanical resonators. Our device is capable of fast qubit-mechanics swap operations, which we use to deterministically manipulate the mechanical states. By placing the qubit into the strong dispersive regime with both mechanical resonators simultaneously, we determine the phonon number distributions of the resonators by means of Ramsey measurements. Finally, we present quantum tomography of the prepared nonclassical and entangled mechanical states. Our result represents a concrete step towards feedback-based operation of a quantum acoustic processor.

SELECTION OF CITATIONS
SEARCH DETAIL
...