Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Immun ; 69(11): 7010-9, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11598076

ABSTRACT

A subset of nontypeable Haemophilus influenzae (NTHI) biotype IV isolates from the human genital tract or from infected newborn infants forms a cryptic genospecies characterized by, among other features, the presence of peritrichous pili. The objective of this study was to determine the similarity of these pili to hemagglutinating, HifA- and HifE-containing pili expressed by respiratory H. influenzae isolates. For this analysis, the presence of hifA and hifE and their gene products in NTHI biotype IV strains was assessed, the binding of H. influenzae biotype IV strains to human epithelial cells was characterized, possible genital tissue tropism of these isolates was explored, and the role of HifA- and HifE-possessing pili in the adhesion of NTHI biotype IV strains to human epithelial cells was determined. None of the six biotype IV NTHI isolates tested agglutinated human red blood cells, nor could they be enriched for hemagglutinating variants. Although hifA, which encodes the major structural subunit of hemagglutinating pili, and hifE, which encodes the tip adhesin of hemagglutinating pili, were detected by PCR from six and five, respectively, of the six biotype IV strains tested, neither HifA nor HifE (the gene products of hifA and hifE) were detected in any of these strains by Western blot analysis using antisera that recognize HifA and HifE of respiratory strains. Transmission electron microscopy showed no surface pili on the two biotype IV H. influenzae isolates examined; strain 4162 containing an insertional mutation in hifA also showed no surface pili, whereas strain 1595 containing an insertional mutation in hifB showed pilus-like structures that were shorter and thicker than hemagglutinating pili of the respiratory strains AAr176 and M43. In enzyme-linked immunosorbent assays, biotype IV strains adhered to 16HBE14o(-) and HEp-2 cells of respiratory origin as well as to ME180 and HeLa cells of genital origin. This adherence was not pilus specific, however, as GM-1, a known pilus receptor analog, did not inhibit binding of biotype IV strains to ME180, HEp-2, or HeLa cells, and GM-1 inhibition of binding to 16HBE14o(-) cells did not correlate with the presence of hifE. While both nonpiliated variants and hifA and hifB (encoding the pilus chaperone) mutants of respiratory strain AAr176 showed reduced binding (64 to 87% of that of piliated AAr176) to 16HBE14o(-) and ME180 cells, hifA and hifB mutants of the biotype IV strains showed minimal reduction in binding to these cell lines (91 to 98% of that of wild-type strains). Thus, although biotype IV H. influenzae isolates of the cryptic genospecies possess the genes that code for HifA- and HifE-containing hemagglutinating pili, epithelial cell adherence exhibited by these strains is not mediated by expression of hemagglutinating pili.


Subject(s)
Adhesins, Bacterial/immunology , Bacterial Outer Membrane Proteins/immunology , Bacterial Proteins/immunology , Fimbriae Proteins , Fimbriae, Bacterial/immunology , Haemophilus influenzae/immunology , Adhesins, Bacterial/genetics , Amino Acid Sequence , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Base Sequence , Cell Line , Cell Separation , DNA, Bacterial , Erythrocytes/immunology , Haemophilus influenzae/genetics , Haemophilus influenzae/isolation & purification , Hemagglutination Tests , Humans , Molecular Sequence Data , Sequence Homology, Amino Acid
2.
Front Biosci ; 6: E41-60, 2001 Sep 01.
Article in English | MEDLINE | ID: mdl-11532609

ABSTRACT

Haemophilus influenzae is both a commensal and a pathogen specific to humans. Here we review this bacterium with special emphasis on characteristics that may be involved in virulence.


Subject(s)
Haemophilus influenzae/genetics , Haemophilus influenzae/pathogenicity , Animals , Disease Models, Animal , Genome, Bacterial , Haemophilus Infections/drug therapy , Haemophilus Infections/microbiology , Haemophilus Vaccines/therapeutic use , Haemophilus influenzae/classification , Humans , Virulence
3.
Infect Immun ; 68(8): 4430-40, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10899840

ABSTRACT

Nontypeable Haemophilus influenzae (NTHi) causes repeated respiratory infections in patients with chronic lung diseases. These infections are characterized by a brisk inflammatory response which results in the accumulation of polymorphonucleated cells in the lungs and is dependent on the expression and secretion of proinflammatory cytokines. We hypothesize that multiple NTHi molecules, including lipooligosaccharide (LOS), mediate cellular interactions with respiratory epithelial cells, leading to the production of proinflammatory cytokines. To address this hypothesis, we exposed 9HTEo- human tracheal epithelial cells to NTHi and compared the resulting profiles of cytokine gene expression and secretion using multiprobe RNase protection assays and enzyme-linked immunosorbent assays (ELISA), respectively. Dose-response experiments demonstrated a maximum stimulation of most cytokines tested, using a ratio of 100 NTHi bacterial cells to 1 9HTEo- tracheal epithelial cell. Compared with purified LOS, NTHi bacterial cells stimulated 3.6- and 4.5-fold increases in epithelial cell expression of interleukin-8 (IL-8) and IL-6 genes, respectively. Similar results were seen with epithelial cell macrophage chemotactic protein 1, IL-1alpha, IL-1beta, and tumor necrosis factor alpha expression. Polymyxin B completely inhibited LOS stimulation but only partially reduced NTHi whole cell stimulation. Taken together, these results suggest that multiple bacterial molecules including LOS contribute to the NTHi stimulation of respiratory epithelial cell cytokine production. Moreover, no correlation was seen between NTHi adherence to epithelial cells mediated by hemagglutinating pili, Hia, HMW1, HMW2, and Hap and epithelial cytokine secretion. These data suggest that bacterial molecules beyond previously described NTHi cell surface adhesins and LOS play a role in the induction of proinflammatory cytokines from respiratory epithelial cells.


Subject(s)
Cytokines/biosynthesis , Epithelial Cells/immunology , Haemophilus influenzae/immunology , Respiratory Mucosa/immunology , Bacterial Adhesion , Bacterial Typing Techniques , Cell Line , Chemokine CCL2/biosynthesis , Epithelial Cells/cytology , Haemophilus influenzae/classification , Humans , Interleukins/biosynthesis , Lipopolysaccharides/immunology , Respiratory Mucosa/cytology , Trachea/cytology , Trachea/immunology , Tumor Necrosis Factor-alpha/biosynthesis
4.
Infect Immun ; 67(5): 2464-74, 1999 May.
Article in English | MEDLINE | ID: mdl-10225909

ABSTRACT

Most human oral viridans streptococci participate in intrageneric coaggregations, the cell-to-cell adherence among genetically distinct streptococci. Two genes relevant to these intrageneric coaggregations were identified by transposon Tn916 mutagenesis of Streptococcus gordonii DL1 (Challis). A 626-bp sequence flanking the left end of the transposon was homologous to dltA and dltB of Lactobacillus rhamnosus ATCC 7469 (formerly called Lactobacillus casei). A 60-kb probe based on this flanking sequence was used to identify the homologous DNA in a fosmid library of S. gordonii DL1. This DNA encoded D-alanine-D-alanyl carrier protein ligase that was expressed in Escherichia coli from the fosmid clone. The cloned streptococcal dltA was disrupted by inserting an ermAM cassette, and then it was linearized and transformed into S. gordonii DL1 for allelic replacement. Erythromycin-resistant transformants containing a single insertion in dltA exhibited a loss of D-alanyl esters in lipoteichoic acid (LTA) and a loss of intrageneric coaggregation. This phenotype was correlated with the loss of a 100-kDa surface protein reported previously to be involved in mediating intrageneric coaggregation (C. J. Whittaker, D. L. Clemans, and P. E. Kolenbrander, Infect. Immun. 64:4137-4142, 1996). The mutants retained the parental ability to participate in intergeneric coaggregation with human oral actinomyces, indicating the specificity of the mutation in altering intrageneric coaggregations. The mutants were altered morphologically and exhibited aberrant cell septa in a variety of pleomorphs. The natural DNA transformation frequency was reduced 10-fold in these mutants. Southern analysis of chromosomal DNAs from various streptococcal species with the dltA probe revealed the presence of this gene in most viridans streptococci. Thus, it is hypothesized that D-alanyl LTA may provide binding sites for the putative 100-kDa adhesin and scaffolding for the proper presentation of this adhesin to mediate intrageneric coaggregation.


Subject(s)
Bacterial Adhesion/genetics , Bacterial Adhesion/physiology , Genes, Bacterial , Streptococcus/genetics , Streptococcus/metabolism , Teichoic Acids/biosynthesis , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Amino Acid Sequence , Base Sequence , Cloning, Molecular , DNA Primers/genetics , DNA Transposable Elements/genetics , DNA, Bacterial/genetics , Humans , Microscopy, Electron , Microscopy, Electron, Scanning , Molecular Sequence Data , Mouth/microbiology , Mutagenesis, Insertional , Sequence Homology, Amino Acid , Streptococcus/ultrastructure
5.
Infect Immun ; 66(2): 656-63, 1998 Feb.
Article in English | MEDLINE | ID: mdl-9453623

ABSTRACT

Adherence of Haemophilus influenzae to epithelial cells plays a central role in colonization and is the first step in infection with this organism. Pili, which are large polymorphic surface proteins, have been shown to mediate the binding of H. influenzae to cells of the human respiratory tract. Earlier experiments have demonstrated that the major epitopes of H. influenzae pili are highly conformational and immunologically heterogenous; their subunit pilins are, however, immunologically homogenous. To define the extent of structural variation in pilins, which polymerize to form pili, the pilin genes (hifA) of 26 type a to f and 16 nontypeable strains of H. influenzae were amplified by PCR and subjected to restriction fragment length polymorphism (RFLP) analysis with AluI and RsaI. Six different RFLP patterns were identified. Four further RFLP patterns were identified from published hifA sequences from five nontypeable H. influenzae strains. Two patterns contained only nontypeable isolates; one of these contained H. influenzae biotype aegyptius strains F3031 and F3037. Another pattern contained predominantly H. influenzae type f strains. All other patterns were displayed by a variety of capsular and noncapsular types. Sequence analysis of selected hifA genes confirmed the 10 RFLP patterns and showed strong identity among representatives displaying the same RFLP patterns. In addition, the immunologic reactivity of pili with antipilus antisera correlated with the groupings of strains based on hifA RFLP patterns. Those strains that show greater reactivity with antiserum directed against H. influenzae type b strain M43 pili tend to fall into one RFLP pattern (pattern 3); while those strains that show equal or greater reactivity with antiserum directed against H. influenzae type b strain Eagan pili tend to fall in a different RFLP pattern (pattern 1). Sequence analysis of representative HifA pilins from typeable and nontypeable H. influenzae identified several highly conserved regions that play a role in bacterial pilus assembly and other regions with considerable amino acid heterogeneity. These regions of HifA amino acid sequence heterogeneity may explain the immunologic diversity seen in intact pili.


Subject(s)
Bacterial Outer Membrane Proteins/genetics , Fimbriae Proteins , Genes, Bacterial , Haemophilus influenzae/genetics , Amino Acid Sequence , Bacterial Outer Membrane Proteins/chemistry , Humans , Immune Sera/immunology , Molecular Sequence Data , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length
6.
Infect Immun ; 64(10): 4137-42, 1996 Oct.
Article in English | MEDLINE | ID: mdl-8926080

ABSTRACT

Transposon Tn916 was used to insertionally inactivate a coaggregation-relevant locus of Streptococcus gordonii DL1 (Challis). One mutant (F11) was isolated that lost the ability to coaggregate with the streptococcal partners of DL1 but retained the ability to coaggregate with partners belonging to other genera. A probe specific for the region flanking the Tn916 insertion was used to isolate a locus-specific fragment from a chromosomal lambda library. Southern analysis of the resulting phagemids revealed that a 0.5-kb EcoRI fragment hybridized with the F11 probe. Cloning of the 0.5-kb EcoRI fragment into the E. coli-streptococcal insertion vector p(omega) yielded pCW4, which was used to insertionally inactivate the putative coaggregation-relevant gene in DL1. Insertion mutants showed altered coaggregation with streptococci but retained wild-type coaggregation properties with other genera of bacteria. Comparison of immunoblots of cell surface proteins showed a 100-kDa protein in DL1 which was not detected in the Tn916 and pCW4 insertion mutants. These results indicate that the 0.5-kb EcoRI fragment is part of an adhesin-relevant locus that is involved in the production of a 100-kDa protein at the cell surface.


Subject(s)
Adhesins, Bacterial/genetics , Mutagenesis, Insertional , Streptococcus/genetics , Amino Acid Sequence , Antigens, Surface/analysis , Base Sequence , Chromosome Mapping , DNA Transposable Elements , Immunoblotting , Molecular Sequence Data , Molecular Weight
7.
Infect Immun ; 63(12): 4890-3, 1995 Dec.
Article in English | MEDLINE | ID: mdl-7591151

ABSTRACT

Streptococcus gordonii DL1 (Challis) bears coaggregation-relevant surface proteins which mediate lactose-inhibitable coaggregations with other streptococci. Six spontaneously occurring coaggregation-defective (Cog-) mutants of wild-type strain S. gordonii DL1 unable to coaggregate with wild-type streptococcal partners were characterized. Antiserum raised against wild-type cells and absorbed with Cog- cells specifically blocked lactose-inhibitable coaggregations between S. gordonii DL1 and its streptococcal partner strains; it did not block lactose-noninhibitable coaggregations with actinomyces partners. Surface proteins were released from the cells by mild sonication treatment and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A 100-kDa surface protein from S. gordonii DL1 was identified by immunoblot analysis with the mutant-absorbed antiserum. Each of the six Cog- mutants lacked the 100-kDa protein. Several other oral viridans streptococci that exhibit intrageneric lactose-inhibitable coaggregations expressed an immunoreactive protein with about the same size as the 100-kDa putative adhesin. It is proposed that the 100-kDa protein is the adhesin which mediates coaggregation between S. gordonii DL1 and its streptococcal partners. The role of this putative adhesin in accretion of streptococci in early colonization of the tooth surface is discussed.


Subject(s)
Adhesins, Bacterial/analysis , Bacterial Adhesion , Streptococcus/physiology , Adhesins, Bacterial/chemistry , Adhesins, Bacterial/physiology , Animals , Female , Immunoblotting , Molecular Weight , Rabbits , Streptococcus/chemistry
8.
J Ind Microbiol ; 15(3): 193-7, 1995 Sep.
Article in English | MEDLINE | ID: mdl-8519477

ABSTRACT

Streptococcus gordonii DL1 (Challis) bears coaggregation-mediating surface adhesins which recognize galactoside-containing surface polysaccharides on Streptococcus oralis 34, Streptococcus oralis C104, and Streptococcus SM PK509. Fifty-nine spontaneously-occurring coaggregation-defective (Cog-) mutants of S. gordonii DL1 unable to coaggregate with partner streptococci were isolated. Six representative Cog- mutants were characterized by their coaggregation properties with four Actinomyces naeslundii strains (T14V, PK947, PK606, PK984), Veillonella atypica PK1910, and Propionibacterium acnes PK93. The six representative Cog- mutants showed altered coaggregation with their streptococcal partners, A. naeslundii PK947, and P. acnes PK93. Based on the coaggregation phenotypes of these mutants, a model for the lactose-inhibitable coaggregation between S. gordonii DL1 and its partner bacteria is proposed. The potential use of these mutants in studies of oral biofilms is discussed.


Subject(s)
Bacterial Adhesion/genetics , Biofilms/growth & development , Mutation , Streptococcus/genetics , Streptococcus/physiology , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Bacterial Adhesion/physiology , Humans , Models, Biological , Polysaccharides, Bacterial/metabolism , Streptococcus/isolation & purification
9.
J Bacteriol ; 173(21): 6749-59, 1991 Nov.
Article in English | MEDLINE | ID: mdl-1718941

ABSTRACT

We have been using monoclonal antibodies (MAbs) as probes to study developmentally relevant cell surface antigens (CSA) that may be required for cellular interactions in Myxococcus xanthus. Three independently isolated MAbs, G69, G357, and G645, isolated by Gill and Dworkin recognize a CSA detectable only on developing cells (J. S. Gill and M. Dworkin, J. Bacteriol. 168:505-511, 1986). The CSA is made within the first 30 min of submerged development and increases until myxosporulation. The CSA is also produced at low levels after 24 h in shaken-starved cultures and during glycerol sporulation. No antigen can be detected in lysed, vegetative cells, and expression of the antigen is blocked in the presence of rifampin or chloramphenicol. The antigen is expressed in submerged, developmental cultures of asg, bsg, csg, dsg, and mgl mutants and is not expressed in a dsp mutant. All of the three MAbs immunoprecipitate the same protein of approximately 97,000 Da from lysed developmental cells. Competitive immunoprecipitations suggest that they recognize at least two different epitopes on the CSA. The epitopes recognized by MAbs G69, G357, and G645 are sensitive to protease digestion, whereas the epitopes recognized by MAbs G357 and G645 are resistant to periodate oxidation. The epitope recognized by MAb G69 is sensitive to periodate oxidation. Fractionation of lysed developing cells shows that most of the antigen is localized in the pellet after centrifugation at 100,000 x g. To determine whether the antigen is expressed on the cell surface, we labeled developing whole cells with either MAb G69, G357, or G645 and gold-labeled anti-mouse immunoglobulin G. Low-voltage scanning electron microscopy of labeled cells shows that the antigen is associated with the fibrillar matrix that surrounds the cells and that the antigen is retained on isolated, developmental fibrils from M. xanthus. The CSA has been designated dFA-1, for developmental fibrillar antigen 1.


Subject(s)
Antigens, Bacterial/immunology , Antigens, Surface/immunology , Myxococcus xanthus/immunology , Antibodies, Monoclonal/immunology , Antigens, Bacterial/ultrastructure , Antigens, Surface/ultrastructure , Binding, Competitive , Blotting, Western , Epitopes , Microscopy, Electron, Scanning , Mutation , Myxococcus xanthus/genetics , Myxococcus xanthus/growth & development , Myxococcus xanthus/ultrastructure , Precipitin Tests , Spores, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL
...