Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37961383

ABSTRACT

The removal of the toxic oxidized cholesterol, 7-ketocholesterol (7KC), from cells through the administration of therapeutics has the potential to treat atherosclerosis and various other pathologies. While cholesterol is a necessary building block for homeostasis, oxidation of cholesterol can lead to the formation of toxic oxysterols involved in various pathologies, the most prominent of which is 7KC, which is formed through the non-enzymatic oxidation of cholesterol. Oxidized LDL (oxLDL) particles, highly implicated in heart disease, contain high levels of 7KC, and molecular 7KC is implicated in the pathogenesis of numerous diseases, including multiple sclerosis, hypercholesterolemia, sickle cell anemia, and multiple age related diseases. Of particular interest is the role of 7KC in the progression of atherosclerosis, with several studies associating elevated levels of 7KC with the etiology of the disease or in the transition of macrophages to foam cells. This research aims to elucidate the molecular mechanisms of UDP-003, a novel therapeutic, in mitigating the harmful effects of 7KC in mouse and human monocyte and macrophage cell lines. Experimental evidence demonstrates that administration of UDP-003 can reverse the foam cell phenotype, rejuvenating these cells by returning phagocytic function and decreasing both reactive oxygen species (ROS) and intracellular lipid droplet accumulation. Furthermore, our data suggests that the targeted removal of 7KC from foam cells with UDP-003 can potentially prevent and reverse atherosclerotic plaque formation. UDP-003 has the potential to be the first disease-modifying therapeutic approach to treating atherosclerotic disease.

2.
Int J Pharm ; 606: 120522, 2021 Sep 05.
Article in English | MEDLINE | ID: mdl-33839224

ABSTRACT

We have developed a novel class of specifically engineered, dimerized cyclodextrin (CD) nanostructures for the encapsulation of toxic biomolecules such as 7-ketocholesterol (7KC). 7KC accumulates over time and causes dysfunction in many cell types, linking it to several age-related diseases including atherosclerosis and age-related macular degeneration (AMD). Presently, treatments for these diseases are invasive, expensive, and show limited benefits. CDs are cyclic glucose oligomers utilized to capture small, hydrophobic molecules. Here, a combination of in silico, in vitro, and ex vivo methods is used to implement a synergistic rational drug design strategy for developing CDs to remove atherogenic 7KC from cells and tissues. Mechanisms by which CDs encapsulate sterols are discussed, and we conclude that covalently linked head-to-head dimers of ßCDs have substantially improved affinity for 7KC compared to monomers. We find that inclusion complexes can be stabilized or destabilized in ways that allow the design of CD dimers with increased 7KC selectivity while maintaining an excellent safety profile. These CD dimers are being developed as therapeutics to treat atherosclerosis and other debilitating diseases of aging.


Subject(s)
Cyclodextrins , Oxysterols , Polymers
3.
Thromb Res ; 190: 112-121, 2020 06.
Article in English | MEDLINE | ID: mdl-32339947

ABSTRACT

INTRODUCTION: High incidence of bleeding events remains a key risk for patients taking anticoagulants, especially those in need of long-term combination therapy with antiplatelet agents. As a consequence, patients may not receive clinically indicated combination antithrombotic therapy. Here, we report on VE-1902, a member of a novel class of precision oral anticoagulants (PROACs) that combines effective anticoagulation with reduced bleeding in preclinical testing. METHODS AND RESULTS: Acting through covalent, reversible active-site modification of thrombin similar to a previously described molecule [1], VE-1902 shows potency and selectivity for thrombin inhibition in human plasma comparable to clinically relevant direct thrombin inhibitors (DTI) such as argatroban and dabigatran (thrombin generation assay ETP EC50 = 1.3 µM compared to 0.36 µM and 0.31 µM for argatroban and dabigatran; >100-fold selectivity against related serine proteases). Unlike the current anticoagulants, VE-1902 does not significantly inhibit thrombin-mediated platelet activation in in vivo models of thrombosis. In the thrombin generation assay, the compound inhibits thrombin formation without significantly delaying the initiation phase of the clotting cascade. These features are possibly responsible for the observed reduced bleeding in tail bleeding and saphenous vein bleeding models. Consistent with this novel pharmacological profile, VE-1902 shows efficacious anticoagulation in several fibrin-driven animal models of thrombosis (arteriovenous shunt, venous stasis thrombosis, and thrombin-induced thromboembolism models), whereas it does not significantly prevent arterial occlusion in the platelet dependent FeCl3 model. CONCLUSIONS: By leaving platelet activation following vascular injury mostly unaffected, VE-1902, and the PROACs more generally, represent a new generation of precision anticoagulants with reduced bleeding risk.


Subject(s)
Antithrombins , Thrombosis , Animals , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Hemorrhage/chemically induced , Hemorrhage/drug therapy , Humans , Rodentia , Thrombin , Thrombosis/drug therapy
4.
Exp Eye Res ; 185: 107585, 2019 08.
Article in English | MEDLINE | ID: mdl-30790544

ABSTRACT

BFSP1 (beaded filament structural protein 1, filensin) is a cytoskeletal protein expressed in the eye lens. It binds AQP0 in vitro and its C-terminal sequences have been suggested to regulate the water channel activity of AQP0. A myristoylated fragment from the C-terminus of BFSP1 was found in AQP0 enriched fractions. Here we identify BFSP1 as a substrate for caspase-mediated cleavage at several C-terminal sites including D433. Cleavage at D433 exposes a cryptic myristoylation sequence (434-440). We confirm that this sequence is an excellent substrate for both NMT1 and 2 (N-myristoyl transferase). Thus caspase cleavage may promote formation of myristoylated fragments derived from the BFSP1 C-terminus (G434-S665). Myristoylation at G434 is not required for membrane association. Biochemical fractionation and immunogold labeling confirmed that C-terminal BFSP1 fragments containing the myristoylation sequence colocalized with AQP0 in the same plasma membrane compartments of lens fibre cells. To determine the functional significance of the association of BFSP1 G434-S665 sequences with AQP0, we measured AQP0 water permeability in Xenopus oocytes co-transfected with transcripts expressing both AQP0 and various C-terminal domain fragments of BFSP1 generated by caspase cleavage. We found that different fragments dramatically alter the response of AQP0 to different concentrations of Ca2+. The complete C-terminal fragment (G434-S665) eliminates calcium regulation altogether. Shorter fragments can enhance regulation by elevated calcium or reverse the response, indicative of the regulatory potential of BFSP1 with respect to AQP0. In particular, elimination of the myristoylation site by the mutation G434A reverses the order of water permeability sensitivity to different Ca2+ concentrations.


Subject(s)
Aquaporins/metabolism , Body Water/metabolism , Calcium/metabolism , Eye Proteins/metabolism , Intermediate Filament Proteins/metabolism , Protein Processing, Post-Translational , Adolescent , Adult , Aged , Amino Acid Sequence , Animals , Blotting, Western , Caspases/metabolism , Cell Membrane Permeability , Cells, Cultured , Epithelial Cells/metabolism , Humans , Immunohistochemistry , Lens, Crystalline/cytology , MCF-7 Cells/metabolism , Microscopy, Electron, Scanning , Middle Aged , Molecular Sequence Data , Myristates/metabolism , Oocytes , Protein Domains , Transfection , Xenopus laevis , Young Adult
5.
PLoS One ; 13(8): e0201377, 2018.
Article in English | MEDLINE | ID: mdl-30071045

ABSTRACT

INTRODUCTION: In recent years, the traditional treatments for thrombotic diseases, heparin and warfarin, are increasingly being replaced by novel oral anticoagulants offering convenient dosing regimens, more predictable anticoagulant responses, and less frequent monitoring. However, these drugs can be contraindicated for some patients and, in particular, their bleeding liability remains high. METHODS: We have developed a new class of direct thrombin inhibitors (VE-DTIs) and have utilized kinetics, biochemical, and X-ray structural studies to characterize the mechanism of action and in vitro pharmacology of an exemplary compound from this class, Compound 1. RESULTS: We demonstrate that Compound 1, an exemplary VE-DTI, acts through reversible covalent inhibition. Compound 1 inhibits thrombin by transiently acylating the active site S195 with high potency and significant selectivity over other trypsin-like serine proteases. The compound inhibits the binding of a peptide substrate with both clot-bound and free thrombin with nanomolar potency. Compound 1 is a low micromolar inhibitor of thrombin activity against endogenous substrates such as fibrinogen and a nanomolar inhibitor of the activation of protein C and thrombin-activatable fibrinolysis inhibitor. In the thrombin generation assay, Compound 1 inhibits thrombin generation with low micromolar potency but does not increase the lag time for thrombin formation. In addition, Compound 1 showed weak inhibition of clotting in PT and aPTT assays consistent with its distinctive profile in the thrombin generation assay. CONCLUSION: Compound 1, while maintaining strong potency comparable to the current DTIs, has a distinct mechanism of action which produces a differentiating pharmacological profile. Acting through reversible covalent inhibition, these direct thrombin inhibitors could lead to new anticoagulants with better combined efficacy and bleeding profiles.


Subject(s)
Antithrombins/chemistry , Models, Chemical , Thrombin/chemistry , Catalytic Domain , Crystallography, X-Ray , Humans
6.
Proc Natl Acad Sci U S A ; 113(15): 4194-9, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-27035963

ABSTRACT

Twik-related K(+) channel 1 (TREK1), TREK2, and Twik-related arachidonic-acid stimulated K(+) channel (TRAAK) form the TREK subfamily of two-pore-domain K(+) (K2P) channels. Despite sharing up to 78% sequence homology and overlapping expression profiles in the nervous system, these channels show major differences in their regulation by physiological stimuli. For instance, TREK1 is inhibited by external acidification, whereas TREK2 is activated. Here, we investigated the ability of the members of the TREK subfamily to assemble to form functional heteromeric channels with novel properties. Using single-molecule pull-down (SiMPull) from HEK cell lysate and subunit counting in the plasma membrane of living cells, we show that TREK1, TREK2, and TRAAK readily coassemble. TREK1 and TREK2 can each heterodimerize with TRAAK, but do so less efficiently than with each other. We functionally characterized the heterodimers and found that all combinations form outwardly rectifying potassium-selective channels but with variable voltage sensitivity and pH regulation. TREK1-TREK2 heterodimers show low levels of activity at physiological external pH but, unlike their corresponding homodimers, are activated by both acidic and alkaline conditions. Modeling based on recent crystal structures, along with mutational analysis, suggests that each subunit within a TREK1-TREK2 channel is regulated independently via titratable His. Finally, TREK1/TRAAK heterodimers differ in function from TRAAK homodimers in two critical ways: they are activated by both intracellular acidification and alkalinization and are regulated by the enzyme phospholipase D2. Thus, heterodimerization provides a means for diversifying functionality through an expansion of the channel types within the K2P channels.


Subject(s)
Potassium Channels, Tandem Pore Domain/metabolism , Cell Line , Dimerization , Humans , Hydrogen-Ion Concentration , Potassium Channels, Tandem Pore Domain/chemistry
7.
Nat Struct Mol Biol ; 20(9): 1085-92, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23893133

ABSTRACT

Calmodulin (CaM) is a universal regulatory protein that communicates the presence of calcium to its molecular targets and correspondingly modulates their function. This key signaling protein is important for controlling the activity of hundreds of membrane channels and transporters. However, understanding of the structural mechanisms driving CaM regulation of full-length membrane proteins has remained elusive. In this study, we determined the pseudoatomic structure of full-length mammalian aquaporin-0 (AQP0, Bos taurus) in complex with CaM, using EM to elucidate how this signaling protein modulates water-channel function. Molecular dynamics and functional mutation studies reveal how CaM binding inhibits AQP0 water permeability by allosterically closing the cytoplasmic gate of AQP0. Our mechanistic model provides new insight, only possible in the context of the fully assembled channel, into how CaM regulates multimeric channels by facilitating cooperativity between adjacent subunits.


Subject(s)
Aquaporins/chemistry , Aquaporins/metabolism , Calmodulin/chemistry , Calmodulin/metabolism , Eye Proteins/chemistry , Eye Proteins/metabolism , Amino Acid Sequence , Animals , Aquaporins/genetics , Binding Sites , Cattle , Eye Proteins/genetics , Hydrophobic and Hydrophilic Interactions , Ion Channel Gating , Microscopy, Electron , Models, Molecular , Molecular Dynamics Simulation , Molecular Sequence Data , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Mutagenesis, Site-Directed , Protein Conformation , Protein Stability , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Sheep
8.
Invest Ophthalmol Vis Sci ; 54(7): 5136-43, 2013 Jul 30.
Article in English | MEDLINE | ID: mdl-23800763

ABSTRACT

PURPOSE: The zebrafish lens is well suited for studies of physiology and development due to its rapid formation in the embryo and genetic accessibility. Aquaporin 0 (AQP0), a lens-specific membrane protein, is required for lens clarity. Zebrafish have two copies of AQP0 (Aqp0a and b), whereas mammals have a single, multifunctional protein. Here we demonstrate a reliable knockdown/rescue system in zebrafish and use it to provide evidence for subfunctionalization of Aqp0a and b, as well as to show that calcium-mediated regulation of Aqp0a in zebrafish lenses is necessary for transparency. METHODS: Coinjection of antisense oligonucleotides and DNA rescue constructs into zebrafish embryos, followed by evaluation of the developing fish for cataracts, was used to analyze the functions of Aqp0a and b. The water permeability and regulation characteristics of each rescue protein were tested in a Xenopus oocyte swelling assay. RESULTS: Both copies of AQP0 are necessary for lens clarity in the zebrafish, and neither is sufficient. Water permeability is necessary but also insufficient. Phosphorylation and regulation of Aqp0a are required for its function. CONCLUSIONS: In the zebrafish lens, the two closely related AQP0s have acquired distinct functions that are both necessary for lens development and clarity. Regulation of AQP0 water permeability, a well-studied phenomenon in vitro, may be physiologically relevant in the living lens.


Subject(s)
Aquaporins/physiology , Cataract/physiopathology , Eye Proteins/physiology , Lens, Crystalline/physiology , Permeability , Zebrafish/physiology , Animals , Biological Transport/physiology , Cataract/metabolism , Disease Models, Animal , Lens, Crystalline/metabolism , Water/metabolism
9.
J Gen Physiol ; 141(3): 287-95, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23440275

ABSTRACT

Aquaporin 0 (AQP0), essential for lens clarity, is a tetrameric protein composed of four identical monomers, each of which has its own water pore. The water permeability of AQP0 expressed in Xenopus laevis oocytes can be approximately doubled by changes in calcium concentration or pH. Although each monomer pore functions as a water channel, under certain conditions the pores act cooperatively. In other words, the tetramer is the functional unit. In this paper, we show that changes in external pH and calcium can induce an increase in water permeability that exhibits either a positive cooperativity switch-like increase in water permeability or an increase in water permeability in which each monomer acts independently and additively. Because the concentrations of calcium and hydrogen ions increase toward the center of the lens, a concentration signal could trigger a regulatory change in AQP0 water permeability. It thus seems plausible that the cooperative modes of water permeability regulation by AQP0 tetramers mediated by decreased pH and elevated calcium are the physiologically important ones in the living lens.


Subject(s)
Aquaporins/metabolism , Eye Proteins/metabolism , Lens, Crystalline/metabolism , Water/metabolism , Animals , Calcium/metabolism , Hydrogen/metabolism , Hydrogen-Ion Concentration , Oocytes/metabolism , Permeability , Xenopus laevis
10.
Mol Biochem Parasitol ; 164(1): 66-73, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19070634

ABSTRACT

Regulation of nuclear genome expression in Trypanosoma brucei is critical for this protozoan parasite's successful transition between its vertebrate and invertebrate host environments. The canonical eukaryotic circuits such as modulation of transcription initiation, mRNA splicing and polyadenylation appear to be nearly non-existent in T. brucei suggesting that the transcriptome is primarily defined by mRNA turnover. Our previous work has highlighted sequence similarities between terminal RNA uridylyl transferases (TUTases) and non-canonical poly(A) polymerases, which are widely implicated in regulating nuclear, cytoplasmic and organellar RNA decay throughout the eukaryotic lineage. Here, we have continued characterization of TUTase-like proteins in T. brucei and identified two nuclear non-canonical poly(A) polymerases (ncPAPs). The 82kDa TbncPAP1 is essential for viability of procyclic and bloodstream forms of T. brucei. Similar to Trf4/5 proteins from budding yeast, TbncPAP1 requires protein cofactor(s) to exert poly(A) polymerase activity in vitro. The recombinant 54kDa TbncPAP2 showed a PAP activity as an individual polypeptide. Proteomic analysis of the TbncPAP1 interactions demonstrated its association with Mtr4 RNA helicase and several RNA binding proteins, including a potential ortholog of Air1p/2p proteins, which indicates the presence of a stable TRAMP-like complex in trypanosomes. Our findings suggest that TbncPAP1 may be a "quality control" nuclear PAP involved in targeting aberrant or anti-sense transcripts for degradation by the 3'-exosome. Such mechanisms are likely to play a major role in alleviating promiscuity of the transcriptional machinery.


Subject(s)
Nuclear Proteins/metabolism , Polynucleotide Adenylyltransferase/metabolism , Protozoan Proteins/metabolism , Trypanosoma brucei brucei/enzymology , Amino Acid Sequence , Animals , Escherichia coli/genetics , Life Cycle Stages/physiology , Molecular Sequence Data , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Nuclear Proteins/isolation & purification , Polynucleotide Adenylyltransferase/chemistry , Polynucleotide Adenylyltransferase/genetics , Polynucleotide Adenylyltransferase/isolation & purification , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/isolation & purification , RNA Helicases/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Serine Endopeptidases/metabolism , Trypanosoma brucei brucei/cytology , Trypanosoma brucei brucei/genetics
11.
Proc Natl Acad Sci U S A ; 104(39): 15430-5, 2007 Sep 25.
Article in English | MEDLINE | ID: mdl-17878315

ABSTRACT

Many chronic viral infections are marked by pathogen persistence and a generalized immunosuppression. The exact mechanisms by which this occurs are still unknown. Using a mouse model of persistent lymphocytic choriomeningitis virus (LCMV) infection, we demonstrate viral targeting of fibroblastic reticular cells (FRC) in the lymphoid organs. The FRC stromal networks are critical for proper lymphoid architecture and function. High numbers of FRC were infected by LCMV clone 13, which causes a chronic infection, whereas few were infected by the acute strain, LCMV Armstrong. The function of the FRC conduit network was altered after clone 13 infection by the action of CD8(+) T cells. Importantly, expression of the inhibitory programmed death ligand 1, which was up-regulated on FRC after infection, reduced early CD8(+) T cell-mediated immunopathology and prevented destruction of the FRC architecture in the spleen. Together, this reveals an important tropism during a persistent viral infection. These data also suggest that the inhibitory PD-1 pathway, which likely evolved to prevent excessive immunopathology, may contribute to viral persistence in FRC during chronic infection.


Subject(s)
Fibroblasts/metabolism , Immunosuppressive Agents/pharmacology , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Chronic Disease , Fibroblasts/virology , Immune Tolerance , Immunosuppression Therapy , Infections , Ligands , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/metabolism , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Spleen/metabolism , Spleen/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...