Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(16): eadg2094, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37083522

ABSTRACT

Quantifying the behavior of small animals traversing long distances in complex environments is one of the most difficult tracking scenarios for computer vision. Tiny and low-contrast foreground objects have to be localized in cluttered and dynamic scenes as well as trajectories compensated for camera motion and drift in multiple lengthy recordings. We introduce CATER, a novel methodology combining an unsupervised probabilistic detection mechanism with a globally optimized environment reconstruction pipeline enabling precision behavioral quantification in natural environments. Implemented as an easy to use and highly parallelized tool, we show its application to recover fine-scale motion trajectories, registered to a high-resolution image mosaic reconstruction, of naturally foraging desert ants from unconstrained field recordings. By bridging the gap between laboratory and field experiments, we gain previously unknown insights into ant navigation with respect to motivational states, previous experience, and current environments and provide an appearance-agnostic method applicable to study the behavior of a wide range of terrestrial species under realistic conditions.


Subject(s)
Ants , Environment , Animals , Vision, Ocular , Motion
2.
Curr Biol ; 33(3): 411-422.e5, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36538930

ABSTRACT

Many insects display lateral oscillations while moving, but how these oscillations are produced and participate in visual navigation remains unclear. Here, we show that visually navigating ants continuously display regular lateral oscillations coupled with variations of forward speed that strongly optimize the distance covered while simultaneously enabling them to scan left and right directions. This pattern of movement is produced endogenously and conserved across navigational contexts in two phylogenetically distant ant species. Moreover, the oscillations' amplitude can be modulated by both innate or learnt visual cues to adjust the exploration/exploitation balance to the current need. This lower-level motor pattern thus drastically reduces the degree of freedom needed for higher-level strategies to control behavior. The observed dynamical signature readily emerges from a simple neural circuit model of the insect's conserved pre-motor area known as the lateral accessory lobe, offering a surprisingly simple but effective neural control and endorsing oscillation as a core, ancestral way of moving in insects.


Subject(s)
Ants , Spatial Navigation , Animals , Learning , Cues , Insecta , Homing Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...