Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 39(3)2023 03 01.
Article in English | MEDLINE | ID: mdl-36808187

ABSTRACT

MOTIVATION: Characterizing all steady-state flux distributions in metabolic models remains limited to small models due to the explosion of possibilities. Often it is sufficient to look only at all possible overall conversions a cell can catalyze ignoring the details of intracellular metabolism. Such a characterization is achieved by elementary conversion modes (ECMs), which can be conveniently computed with ecmtool. However, currently, ecmtool is memory intensive, and it cannot be aided appreciably by parallelization. RESULTS: We integrate mplrs-a scalable parallel vertex enumeration method-into ecmtool. This speeds up computation, drastically reduces memory requirements and enables ecmtool's use in standard and high-performance computing environments. We show the new capabilities by enumerating all feasible ECMs of the near-complete metabolic model of the minimal cell JCVI-syn3.0. Despite the cell's minimal character, the model gives rise to 4.2×109 ECMs and still contains several redundant sub-networks. AVAILABILITY AND IMPLEMENTATION: ecmtool is available at https://github.com/SystemsBioinformatics/ecmtool. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Metabolic Networks and Pathways , Models, Biological
2.
Patterns (N Y) ; 2(1): 100177, 2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33511367

ABSTRACT

The metabolic capabilities of cells determine their biotechnological potential, fitness in ecosystems, pathogenic threat levels, and function in multicellular organisms. Their comprehensive experimental characterization is generally not feasible, particularly for unculturable organisms. In principle, the full range of metabolic capabilities can be computed from an organism's annotated genome using metabolic network reconstruction. However, current computational methods cannot deal with genome-scale metabolic networks. Part of the problem is that these methods aim to enumerate all metabolic pathways, while computation of all (elementally balanced) conversions between nutrients and products would suffice. Indeed, the elementary conversion modes (ECMs, defined by Urbanczik and Wagner) capture the full metabolic capabilities of a network, but the use of ECMs has not been accessible until now. We explain and extend the theory of ECMs, implement their enumeration in ecmtool, and illustrate their applicability. This work contributes to the elucidation of the full metabolic footprint of any cell.

SELECTION OF CITATIONS
SEARCH DETAIL
...