Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Plant Biol (Stuttg) ; 26(4): 521-531, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38568875

ABSTRACT

Plants face a wide range of biotic and abiotic stress conditions, which are further intensified by climate change. Among these stressors, increased irradiation in terms of intensity and wavelength range can lead to detrimental effects, such as chlorophyll degradation, destruction of the PSII reaction center, generation of ROS, alterations to plant metabolism, and even plant death. Here, we investigated the responses of two citrus genotypes, Citrus macrophylla (CM), and Troyer citrange (TC) to UV-B light-induced stress, by growing plants of both genotypes under control and UV-B stress conditions for 5 days to evaluate their tolerance mechanisms. TC seedlings had higher sensitivity to UV-B light than CM seedlings, as they showed more damage and increased levels of oxidative harm (indicated by the accumulation of MDA). In contrast, CM seedlings exhibited specific adaptive mechanisms, including accumulation of higher levels of proline under stressful conditions, and enhanced antioxidant capacity, as evidenced by increased ascorbate peroxidase activity and upregulation of the CsAPX2 gene. Phytohormone accumulation patterns were similar in both genotypes, with a decrease in ABA content in response to UV-B light. Furthermore, expression of genes involved in light perception and response was specifically affected in the tolerant CM seedlings, which exhibited higher expression of CsHYH/CsHY5 and CsRUP1-2 genes. These findings underscore the importance of the antioxidant system in citrus plants subjected to UV-B light-induced stress and suggest that CsHYH/CsHY5 and CsRUP1-2 could be considered genes associated with tolerance to such challenging conditions.


Subject(s)
Antioxidants , Citrus , Proline , Seedlings , Ultraviolet Rays , Citrus/radiation effects , Citrus/genetics , Citrus/physiology , Citrus/metabolism , Proline/metabolism , Antioxidants/metabolism , Seedlings/radiation effects , Seedlings/physiology , Seedlings/genetics , Seedlings/metabolism , Stress, Physiological , Gene Expression Regulation, Plant/radiation effects , Genotype , Plant Growth Regulators/metabolism , Oxidative Stress/radiation effects , Adaptation, Physiological/radiation effects , Adaptation, Physiological/genetics , Plant Proteins/metabolism , Plant Proteins/genetics
2.
Neurología (Barc., Ed. impr.) ; 38(8): 577-590, Oct. 20232. ilus, graf, tab
Article in Spanish | IBECS | ID: ibc-226325

ABSTRACT

Introducción: La aplicación de la inteligencia artificial y en particular de algoritmos de aprendizaje automático o «machine learning» (ML) constituye un desafío y al mismo tiempo una gran oportunidad en diversas disciplinas científicas, técnicas y clínicas. Las aplicaciones específicas en el estudio de la esclerosis múltiple (EM) no han sido una excepción mostrando un creciente interés en los últimos años. Objetivo: Realizar una revisión sistemática de la aplicación de algoritmos de ML en la EM. Material y métodos: Empleando el motor de búsqueda de libre acceso PubMed que accede a la base de datos MEDLINE, se seleccionaron aquellos estudios que incluyeran simultáneamente los dos siguientes conceptos de búsqueda: «machine learning» y «multiple sclerosis». Se rechazaron aquellos estudios que fueran revisiones, estuvieran en otro idioma que no fuera el castellano o el inglés, y aquellos trabajos que tuvieran un carácter técnico y no fueran aplicados para la EM. Se seleccionaron como válidos 76 artículos y fueron rechazados 38. Conclusiones: Tras la revisión de los estudios seleccionados, se pudo observar que la aplicación del ML en la EM se concentró en cuatro categorías: 1) clasificación de subtipos de pacientes dentro de la enfermedad; 2) diagnóstico del paciente frente a controles sanos u otras enfermedades; 3) predicción de la evolución o de la respuesta a intervenciones terapéuticas y por último 4) otros enfoques. Los resultados hallados hasta la fecha muestran que los diferentes algoritmos de ML pueden ser un gran apoyo para el profesional sanitario tanto en la clínica como en la investigación de la EM.(AU)


Introduction: The applications of artificial intelligence, and in particular automatic learning or “machine learning” (ML), constitute both a challenge and a great opportunity in numerous scientific, technical, and clinical disciplines. Specific applications in the study of multiple sclerosis (MS) have been no exception, and constitute an area of increasing interest in recent years. Objective: We present a systematic review of the application of ML algorithms in MS. Materials and methods: We used the PubMed search engine, which allows free access to the MEDLINE medical database, to identify studies including the keywords “machine learning” and “multiple sclerosis.” We excluded review articles, studies written in languages other than English or Spanish, and studies that were mainly technical and did not specifically apply to MS. The final selection included 76 articles, and 38 were rejected. Conclusions: After the review process, we established 4 main applications of ML in MS: 1) classifying MS subtypes; 2) distinguishing patients with MS from healthy controls and individuals with other diseases; 3) predicting progression and response to therapeutic interventions; and 4) other applications. Results found to date have shown that ML algorithms may offer great support for health professionals both in clinical settings and in research into MS.(AU)


Subject(s)
Humans , Multiple Sclerosis , Biomarkers , Artificial Intelligence , Machine Learning/trends , Neurology , Nervous System Diseases
3.
Neurologia (Engl Ed) ; 38(8): 577-590, 2023 Oct.
Article in English | MEDLINE | ID: mdl-35843587

ABSTRACT

INTRODUCTION: The applications of artificial intelligence, and in particular automatic learning or "machine learning" (ML), constitute both a challenge and a great opportunity in numerous scientific, technical, and clinical disciplines. Specific applications in the study of multiple sclerosis (MS) have been no exception, and constitute an area of increasing interest in recent years. OBJECTIVE: We present a systematic review of the application of ML algorithms in MS. MATERIALS AND METHODS: We used the PubMed search engine, which allows free access to the MEDLINE medical database, to identify studies including the keywords "machine learning" and "multiple sclerosis." We excluded review articles, studies written in languages other than English or Spanish, and studies that were mainly technical and did not specifically apply to MS. The final selection included 76 articles, and 38 were rejected. CONCLUSIONS: After the review process, we established 4 main applications of ML in MS: 1) classifying MS subtypes; 2) distinguishing patients with MS from healthy controls and individuals with other diseases; 3) predicting progression and response to therapeutic interventions; and 4) other applications. Results found to date have shown that ML algorithms may offer great support for health professionals both in clinical settings and in research into MS.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/diagnosis , Artificial Intelligence , Machine Learning , Algorithms
4.
Plant Physiol Biochem ; 186: 232-241, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35926283

ABSTRACT

Accumulation of noxious elements in the edible part of crops and its impact on food safety is of increasing concern. Rice is one of the major staple food crops worldwide, including arsenic (As)-polluted areas, in which dietary As exposure is becoming a widespread health threat. Plant chemical priming has been shown to be an effective strategy to enhance tolerance to environmental stresses, including metal(loid) exposure. The priming effect of ascorbic acid (AsA) was assessed in rice seedlings exposed to As(V) in a hydroponics experiment. AsA treatment (co-addition to the growing media concomitantly (t0) or 24 h in advance (t24)) prevented an excessive accumulation of As in the roots (that decreased âˆ¼ 60%) and stimulated the activities of photosynthetic and antioxidant attributes (∼1.2-fold) in the aerial part of the plants. The increase in proline levels in both shoots (∼2.1-fold) and roots (∼2.4-fold) was found to be the most sensitive stress parameter, and was able to reflect the AsA-induced reduction of As toxic effects (concentrations back to Control levels, both simultaneously added or added as a pretreatment) in the aerial part of the plants. However, the phytotoxic effects related to As exposure were not fully prevented by priming with AsA, and further research is needed to find alternative priming approaches.


Subject(s)
Arsenic , Oryza , Antioxidants/metabolism , Arsenic/toxicity , Ascorbic Acid/pharmacology , Oryza/metabolism , Oxidative Stress , Plant Roots/metabolism , Seedlings/metabolism
5.
Chemosphere ; 302: 134937, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35561768

ABSTRACT

The use of macrophytes has been proposed recently as a suitable option for the phytostabilization or rhizofiltration of soils or waters contaminated by trace elements. As one of the most representative species of this type of plant, common reed (Phragmites australis (Cav.) Trin. ex Steud.) has shown tolerance to high concentrations of potentially hazardous elements, as is the case of arsenic. However, a deeper knowledge of how these plants deal with this toxicity, including their oxidative response, is needed for the optimum utilization of this species in phytoremediation procedures. In fact, little is known about how common reed plants react to As toxicity or the tolerance limits and accumulation potential of this species. In this work, common reed plants were exposed to a range of As(V) mass concentrations (0.5-10 mg L-1) in a hydroponic experiment, and the performance of the plants (growth, photosynthetic pigments, and oxidative stress related parameters) was evaluated and related to the major As species present in the different parts of the plants. The plants did not show any apparent symptom of toxicity and no significant effects were found for any of the different plant parameters analyzed. Arsenic was mostly accumulated as As(III) in the roots of the plants, and almost no translocation to the aerial part of the plants was observed for any of the As species analyzed. Common reed has shown a high capacity for As accumulation in its roots with no signs of toxicity, despite small nutrient imbalances. Thus, it can be considered to be a good candidate for use in the rhizofiltration and phytostabilization of As contaminated waters and soils, respectively.


Subject(s)
Arsenic , Arsenic/toxicity , Biodegradation, Environmental , Oxidative Stress , Plant Roots , Plants , Poaceae , Soil
6.
Environ Geochem Health ; 44(1): 99-115, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34060009

ABSTRACT

Drastic changes in the water regime of trace elements (TEs) contaminated soils under semiarid conditions, from completely dry to flooding situations, may alter the solubility of the contaminants and, therefore, their potential mobility and availability to plants. Certain macrophyte species have shown a promising suitability for their use in the phytoremediation of TEs contaminated soils under fluctuating flooded-unflooded conditions, as a consequence of their high resistance and tolerance to contamination. Similarly, different water conditions occur during rice (Oryza sativa) cultivation, a species often used as a model plant for TEs toxicity studies. The aim of this work was to study the tolerance and oxidative response to TEs of common reed (Phragmites australis) and rice grown in contaminated mining soils, when exposed to different water saturation conditions. Both species (common reed and rice) were cultivated in three different contaminated soils from the Sierra Minera of La Unión-Cartagena (SE-Spain) under contrasting water saturation conditions (flooded and unflooded) in a pot experiment. Soil EC and elevated metal (mainly Cd and Zn) soluble concentrations conditioned the survival of the plants. Whereas, As accumulation in the aerial part of both species influenced the most oxidative stress homeostasis. Common reed showed to be a good candidate for its use in the phytostabilization of TEs contaminated soils under both flooded and unflooded conditions.


Subject(s)
Oryza , Soil Pollutants , Trace Elements , Poaceae , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
7.
Nat Commun ; 12(1): 6088, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34667165

ABSTRACT

Plant pathogens pose increasing threats to global food security, causing yield losses that exceed 30% in food-deficit regions. Xylella fastidiosa (Xf) represents the major transboundary plant pest and one of the world's most damaging pathogens in terms of socioeconomic impact. Spectral screening methods are critical to detect non-visual symptoms of early infection and prevent spread. However, the subtle pathogen-induced physiological alterations that are spectrally detectable are entangled with the dynamics of abiotic stresses. Here, using airborne spectroscopy and thermal scanning of areas covering more than one million trees of different species, infections and water stress levels, we reveal the existence of divergent pathogen- and host-specific spectral pathways that can disentangle biotic-induced symptoms. We demonstrate that uncoupling this biotic-abiotic spectral dynamics diminishes the uncertainty in the Xf detection to below 6% across different hosts. Assessing these deviating pathways against another harmful vascular pathogen that produces analogous symptoms, Verticillium dahliae, the divergent routes remained pathogen- and host-specific, revealing detection accuracies exceeding 92% across pathosystems. These urgently needed hyperspectral methods advance early detection of devastating pathogens to reduce the billions in crop losses worldwide.


Subject(s)
Ascomycota/physiology , Olea/microbiology , Plant Diseases/microbiology , Prunus dulcis/microbiology , Xylella/physiology , Dehydration , Host Specificity , Olea/chemistry , Prunus dulcis/chemistry , Spectrum Analysis , Stress, Physiological
8.
Neurologia (Engl Ed) ; 2021 Feb 03.
Article in English, Spanish | MEDLINE | ID: mdl-33549371

ABSTRACT

INTRODUCTION: The applications of artificial intelligence, and in particular automatic learning or "machine learning" (ML), constitute both a challenge and a great opportunity in numerous scientific, technical, and clinical disciplines. Specific applications in the study of multiple sclerosis (MS) have been no exception, and constitute an area of increasing interest in recent years. OBJECTIVE: We present a systematic review of the application of ML algorithms in MS. MATERIALS AND METHODS: We used the PubMed search engine, which allows free access to the MEDLINE medical database, to identify studies including the keywords "machine learning" and "multiple sclerosis." We excluded review articles, studies written in languages other than English or Spanish, and studies that were mainly technical and did not specifically apply to MS. The final selection included 76 articles, and 38 were rejected. CONCLUSIONS: After the review process, we established 4 main applications of ML in MS: 1) classifying MS subtypes; 2) distinguishing patients with MS from healthy controls and individuals with other diseases; 3) predicting progression and response to therapeutic interventions; and 4) other applications. Results found to date have shown that ML algorithms may offer great support for health professionals both in clinical settings and in research into MS.

9.
Sci Rep ; 10(1): 20721, 2020 11 26.
Article in English | MEDLINE | ID: mdl-33244155

ABSTRACT

Some of the anatomical and functional basis of cognitive impairment in multiple sclerosis (MS) currently remains unknown. In particular, there is scarce knowledge about modulations in induced EEG (nonphase activity) for diverse frequency bands related to attentional deficits in this pathology. The present study analyzes phase and nonphase alpha and gamma modulations in 26 remitting-relapsing multiple sclerosis patients during their participation in the attention network test compared with twenty-six healthy controls (HCs) matched in sociodemographic variables. Behavioral results showed that the MS group exhibited general slowing, suggesting impairment in alerting and orienting networks, as has been previously described in other studies. Time-frequency analysis of EEG revealed that the gamma band was related to the spatial translation of the attentional focus, and the alpha band seemed to be related to the expectancy mechanisms and cognitive processing of the target. Moreover, phase and nonphase modulations differed in their psychophysiological roles and were affected differently in the MS and HC groups. In summary, nonphase modulations can unveil hidden cognitive mechanisms for phase analysis and complete our knowledge of the neural basis of cognitive impairment in multiple sclerosis pathology.


Subject(s)
Attention/physiology , Multiple Sclerosis, Relapsing-Remitting/physiopathology , Multiple Sclerosis/physiopathology , Adult , Electroencephalography/methods , Female , Humans , Maintenance/methods , Male , Middle Aged , Neuropsychological Tests , Orientation/physiology , Reaction Time/physiology
10.
Heliyon ; 6(8): e04703, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32904218

ABSTRACT

Arsenic (As) uptake by plants is mainly carried out as arsenate (As(V)), whose chemical analogy with phosphate is largely responsible for its elevated toxicity. Arsenate is known to stimulate reactive oxygen species (ROS) formation in plants that provoke oxidative stress. This manuscript reports the results of a hydroponics study using rice (Oryza sativa L.) seedlings as a test plant, where the effects of increasing arsenate concentrations (0-10 mg L-1) on both lipid and protein oxidation, as well as As accumulation and speciation in plant roots and shoots were examined. Plant yield was negatively affected by increasing As concentration. Accumulation in plant roots was higher than in shoots at low arsenate doses (0.5-2.5 mg L-1), while root to shoot transport was drastically enhanced at the highest doses (5 and 10 mg L-1). Moreover, As(V) was the dominating species in the shoots and As(III) in the roots. Rice leaves in the 10 mg As L-1 treatment showed the highest lipid peroxidation damage (malondialdehyde concentration), whilst protein oxidation was not remarkably influenced by As dose. Lipid peroxidation seems to be therefore conditioned by As accumulation in rice plants, particularly by the presence of high As(V) concentrations in the aerial part of the plants as a consequence of unregulated translocation from roots to shoots above a threshold concentration (1.25-2.5 mg L-1) in the growing media. These results provide relevant information regarding As(V) toxic concentrations for rice plants, highlight the importance of major As species analysis in plant tissues regarding As toxicity and contribute to better understand plants response to elevated As concentrations in the growing media.

11.
Protein Sci ; 29(1): 66-75, 2020 01.
Article in English | MEDLINE | ID: mdl-31576635

ABSTRACT

Small-angle scattering (SAS) of X-rays and neutrons is a fundamental tool to study the nanostructural properties, and in particular, biological macromolecules in solution. In structural biology, SAS recently transformed from a specialization into a general technique leading to a dramatic increase in the number of publications reporting structural models. The growing amount of data recorded and published has led to an urgent need for a global SAS repository that includes both primary data and models. In response to this, a small-angle scattering biological data bank (SASBDB) was designed in 2014 and is available for public access at www.sasbdb.org. SASBDB is a comprehensive, free and searchable repository of SAS experimental data and models deposited together with the relevant experimental conditions, sample details and instrument characteristics. SASBDB is rapidly growing, and presently has over 1,000 entries containing more than 1,600 models. We describe here the overall organization and procedures of SASBDB paying most attention to user-relevant information during submission. Perspectives of further developments, in particular, with OneDep system of the Protein Data Bank, and also widening of SASBDB including new types of data/models are discussed.


Subject(s)
Databases, Factual , Macromolecular Substances/chemistry , Data Curation , Models, Molecular , Proteins , Scattering, Small Angle , User-Computer Interface , X-Ray Diffraction
12.
Remote Sens Environ ; 223: 320-335, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-31007289

ABSTRACT

With the advent of Sentinel-2, it is now possible to generate large-scale chlorophyll content maps with unprecedented spatial and temporal resolution, suitable for monitoring ecological processes such as vegetative stress and/or decline. However methodological gaps exist for adapting this technology to heterogeneous natural vegetation and for transferring it among vegetation species or plan functional types. In this study, we investigated the use of Sentinel-2A imagery for estimating needle chlorophyll (Ca+b) in a sparse pine forest undergoing significant needle loss and tree mortality. Sentinel-2A scenes were acquired under two extreme viewing geometries (June vs. December 2016) coincident with the acquisition of high-spatial resolution hyperspectral imagery, and field measurements of needle chlorophyll content and crown leaf area index. Using the high-resolution hyperspectral scenes acquired over 61 validation sites we found the CI chlorophyll index R750/R710 and Macc index (which uses spectral bands centered at 680 nm, 710 nm and 780 nm) had the strongest relationship with needle chlorophyll content from individual tree crowns (r2 = 0.61 and r2 = 0.59, respectively; p < 0.001), while TCARI and TCARI/OSAVI, originally designed for uniform agricultural canopies, did not perform as well (r2 = 0.21 and r2 = 0.01, respectively). Using lower-resolution Sentinel-2A data validated against hyperspectral estimates and ground truth needle chlorophyll content, the red-edge index CI and the Sentinel-specific chlorophyll indices CI-Gitelson, NDRE1 and NDRE2 had the highest accuracy (with r2 values >0.7 for June and >0.4 for December; p < 0.001). The retrieval of needle chlorophyll content from the entire Sentinel-2A bandset using the radiative transfer model INFORM yielded r2 = 0.71 (RMSE = 8.1 µg/cm2) for June, r2 = 0.42 (RMSE = 12.2 µg/cm2) for December, and r2 = 0.6 (RMSE = 10.5 µg/cm2) as overall performance using the June and December datasets together. This study demonstrates the retrieval of leaf Ca+b with Sentinel-2A imagery by red-edge indices and by an inversion method based on a hybrid canopy reflectance model that accounts for tree density, background and shadow components common in sparse forest canopies.

13.
Chemosphere ; 223: 223-231, 2019 May.
Article in English | MEDLINE | ID: mdl-30784729

ABSTRACT

Trace element (TE)-contaminated soils require the improvement of their physico-chemical properties in order to allow their restoration through phytostabilization technologies. This study aimed to determine the usefulness of oxidative stress related parameters to validate the suitability of two different combinations of organic (solid fraction of pig slurry) and inorganic (paper mill sludge or a commercial red mud derivative) amendments for the phytostabilization of an acidic (4.2) TE-contaminated mine soil from SE Spain. Two wild species (Silybum marianum and Piptatherum miliaceum) were greenhouse cultivated and the development of the plants, their ionome, and oxidative stress related parameters were determined. Both amendment combinations increased significantly soil pH (to 5-6) and soil/pore water total organic C and total N concentrations, allowing an adequate plant growth and development (plants did not grow in untreated soils). The combination of amendments significantly reduced metal availability and showed to be effective (specially the one including the red mud derivative) in limiting shoot TE concentrations, which were all within common ranges (exclusion based tolerance of these species). Both protein carbonylation and lipid peroxidation were significantly higher in S. marianum plants from phytostabilized soils than in those from non-contaminated soils, which confirms the oxidative stress these plants suffer despite their satisfactory growth in the treated soils. P. miliaceum plants showed no differences between phytostabilized and non-contaminated soils. Therefore, the combination of amendments and TE-tolerant autochthonous species would be a suitable option for the phytostabilisation of soils contaminated by mining activities, reducing TE solubility and allowing an adequate plant growth.


Subject(s)
Mining , Oxidative Stress/drug effects , Plant Development/drug effects , Soil/chemistry , Trace Elements/adverse effects , Animals , Inorganic Chemicals/pharmacology , Organic Chemicals/pharmacology , Plants/metabolism , Soil Pollutants/analysis , Spain , Swine
14.
Nat Plants ; 4(7): 432-439, 2018 07.
Article in English | MEDLINE | ID: mdl-29942047

ABSTRACT

Plant pathogens cause significant losses to agricultural yields and increasingly threaten food security1, ecosystem integrity and societies in general2-5. Xylella fastidiosa is one of the most dangerous plant bacteria worldwide, causing several diseases with profound impacts on agriculture and the environment6. Primarily occurring in the Americas, its recent discovery in Asia and Europe demonstrates that X. fastidiosa's geographic range has broadened considerably, positioning it as a reemerging global threat that has caused socioeconomic and cultural damage7,8. X. fastidiosa can infect more than 350 plant species worldwide9, and early detection is critical for its eradication8. In this article, we show that changes in plant functional traits retrieved from airborne imaging spectroscopy and thermography can reveal X. fastidiosa infection in olive trees before symptoms are visible. We obtained accuracies of disease detection, confirmed by quantitative polymerase chain reaction, exceeding 80% when high-resolution fluorescence quantified by three-dimensional simulations and thermal stress indicators were coupled with photosynthetic traits sensitive to rapid pigment dynamics and degradation. Moreover, we found that the visually asymptomatic trees originally scored as affected by spectral plant-trait alterations, developed X. fastidiosa symptoms at almost double the rate of the asymptomatic trees classified as not affected by remote sensing. We demonstrate that spectral plant-trait alterations caused by X. fastidiosa infection are detectable previsually at the landscape scale, a critical requirement to help eradicate some of the most devastating plant diseases worldwide.


Subject(s)
Plant Diseases/microbiology , Xylella , Fluorescence , Imaging, Three-Dimensional , Olea/microbiology , Satellite Imagery , Spectrum Analysis/methods , Thermography
15.
ISPRS J Photogramm Remote Sens ; 137: 134-148, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29551855

ABSTRACT

The operational monitoring of forest decline requires the development of remote sensing methods that are sensitive to the spatiotemporal variations of pigment degradation and canopy defoliation. In this context, the red-edge spectral region (RESR) was proposed in the past due to its combined sensitivity to chlorophyll content and leaf area variation. In this study, the temporal dimension of the RESR was evaluated as a function of forest decline using a radiative transfer method with the PROSPECT and 3D FLIGHT models. These models were used to generate synthetic pine stands simulating decline and recovery processes over time and explore the temporal rate of change of the red-edge chlorophyll index (CI) as compared to the trajectories obtained for the structure-related Normalized Difference Vegetation Index (NDVI). The temporal trend method proposed here consisted of using synthetic spectra to calculate the theoretical boundaries of the subspace for healthy and declining pine trees in the temporal domain, defined by CItime=n/CItime=n+1 vs. NDVItime=n/NDVItime=n+1. Within these boundaries, trees undergoing decline and recovery processes showed different trajectories through this subspace. The method was then validated using three high-resolution airborne hyperspectral images acquired at 40 cm resolution and 260 spectral bands of 6.5 nm full-width half-maximum (FWHM) over a forest with widespread tree decline, along with field-based monitoring of chlorosis and defoliation (i.e., 'decline' status) in 663 trees between the years 2015 and 2016. The temporal rate of change of chlorophyll vs. structural indices, based on reflectance spectra extracted from the hyperspectral images, was different for trees undergoing decline, and aligned towards the decline baseline established using the radiative transfer models. By contrast, healthy trees over time aligned towards the theoretically obtained healthy baseline. The applicability of this temporal trend method to the red-edge bands of the MultiSpectral Imager (MSI) instrument on board Sentinel-2a for operational forest status monitoring was also explored by comparing the temporal rate of change of the Sentinel-2-derived CI over areas with declining and healthy trees. Results demonstrated that the Sentinel-2a red-edge region was sensitive to the temporal dimension of forest condition, as the relationships obtained for pixels in healthy condition deviated from those of pixels undergoing decline.

16.
Chemosphere ; 178: 556-564, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28351014

ABSTRACT

Phytostabilisation strategies have proven to be an efficient remediation option for mine tailings, but the adequate plant species and amendments have to be carefully selected. A remediation experiment was carried out at the semi-field level in tailings (pH 3.2, ≈1100, 4700 and 5000 mg kg-1 of As, Pb and Zn, respectively) from the mining district of La Unión-Cartagena (SE Spain). A red mud derivative (Fe/Al oxides), its combination with compost, and hydrated lime (Ca hydroxide) were applied in field plots of 0.25 m2. After four months of field stabilisation, tailings were transferred unaltered to a plant growth facility, and Atriplex halimus and Zygophyllum fabago (halophytes) were sown. Three months later, trace element (TE) solubility, plant accumulation and chemical speciation in the tailings pore water were studied. In unamended tailings, soluble TEs concentrations were very high (e.g., 40 mg Zn l-1), the dominant species being free ions and SO42-- complexes (>70%). The addition of amendments increased tailings pH (6.7-7), reduced TEs solubility and extractability (>80-99%) and changed the dominant species of soluble Al, Cu, Pb and Zn to hydroxides and/or organo-metallic complexes, but increased slightly the extractable As and soluble Tl concentrations. Plants were able to grow only in amended tailings, and both species presented low levels of Al, As, Cd and Zn. Therefore, the use of combined red mud derivative and compost and halophytes was shown to be a good phytostabilisation strategy, although the dose applied must be carefully chosen in order to avoid possible solubilisation of As and Tl.


Subject(s)
Environmental Restoration and Remediation/methods , Metals, Heavy/analysis , Mining , Plant Development/drug effects , Soil Pollutants/analysis , Calcium Compounds , Environmental Monitoring/methods , Metals, Heavy/isolation & purification , Metals, Heavy/pharmacology , Oxides , Soil/chemistry , Soil Pollutants/isolation & purification , Soil Pollutants/pharmacology , Spain
17.
Acta Trop ; 157: 30-41, 2016 May.
Article in English | MEDLINE | ID: mdl-26814619

ABSTRACT

The Asian tiger mosquito Aedes albopictus (Skuse), is one of the most invasive mosquito species worldwide. In Mexico it is now recorded in 12 states and represents a serious public health problem, given the recent introduction of Chikungunya on the southern border. The aim of this study was to analyze the population genetics of A. albopictus from all major recorded foci, and model its ecological niche. Niche similarity with that from its autochthonous distribution in Asia and other invaded countries were analyzed and its potential future expansion and potential human exposure in climate change scenarios measured. We analyzed 125 sequences of a 317 bp fragment of the cyt b gene from seven A. albopictus populations across Mexico. The samples belong to 25 haplotypes with moderate population structuring (Fst=0.081, p<0.02) and population expansion. The most prevalent haplotype, found in all principal sites, was shared with the USA, Brazil, France, Madagascar, and Reunion Island. The ecological niche model using Mexican occurrence records covers 79.7% of the country, and has an 83% overlap with the Asian niche projected to Mexico. Both Neotropical and Nearctic regions are included in the Mexican niche model. Currently in Mexico, 38.6 million inhabitants are exposed to A. albopictus, which is expected to increase to 45.6 million by 2070. Genetic evidence supports collection information that A. albopictus was introduced to Mexico principally by land from the USA and Central and South America. Prevalent haplotypes from Mexico are shared with most invasive regions across the world, just as there was high niche similarity with both natural and invaded regions. The important overlap with the Asian niche model suggests a high potential for the species to disperse to sylvatic regions in Mexico.


Subject(s)
Aedes/genetics , Chikungunya Fever/parasitology , Chikungunya Fever/virology , Ecology , Genetics, Population , Introduced Species , Animals , Chikungunya Fever/epidemiology , Climate Change , Geography , Haplotypes , Humans , Mexico/epidemiology
18.
Chemosphere ; 107: 101-108, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24875876

ABSTRACT

The feasibility of two organic materials (pig slurry and compost) in combination with hydrated lime for the remediation of a highly acidic trace elements (TEs) contaminated mine soil was assessed in a mesocosm experiment. The effects of the amendments on soil biochemical and ecotoxicological properties were evaluated and related with the main physicochemical characteristics of soil and soil solution. The original soil showed impaired basic ecological functions due to the high availability of TEs, its acidic pH and high salinity. The three amendments slightly reduced the direct and indirect soil toxicity to plants, invertebrates and microorganisms as a consequence of the TEs' mobility decrease in topsoil, reducing therefore the soil associated risks. The organic amendments, especially compost, thanks to the supply of essential nutrients, were able to improve soil health, as they stimulated plant growth and significantly increased enzyme activities related with the key nutrients in soil. Therefore, the use of compost or pig slurry, in combination with hydrated lime, decreased soil ecotoxicity and seems to be a suitable management strategy for the remediation of highly acidic TEs contaminated soils.


Subject(s)
Calcium Compounds/pharmacology , Ecotoxicology , Manure , Mining , Oxides/pharmacology , Soil/chemistry , Acid Phosphatase/metabolism , Animals , Biodegradation, Environmental/drug effects , Biological Assay , Calcium Compounds/chemistry , Chemical Phenomena , Fertilizers , Oligochaeta/drug effects , Oxides/chemistry , Soil Pollutants/isolation & purification , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Swine , beta-Glucosidase/metabolism
19.
Chemosphere ; 107: 121-128, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24875879

ABSTRACT

A mesocosm experiment, in columns, was conducted in a growth chamber to assess the viability of two organic materials (pig slurry and compost; in combination with hydrated lime) for the remediation of a highly acidic and trace elements (TEs) contaminated mine soil and the reduction of its associated leaching risks. Their influence on the evolution throughout the soil depth of the physicochemical properties (including TEs mobility) of the soil and soil solution (in situ periodic collection) and on Lolium perenne growth and foliar TEs accumulation was evaluated. Soluble and extractable concentrations of the different TEs were considerably high, although the organic amendments (with lime) and lime addition successfully decreased TEs mobility in the top soil layer, as a consequence of a rise in pH and changes in the redox conditions. Compost and pig slurry increased the soluble organic-C and dissolved N, K and P of the soil, producing a certain downwards displacement of N and K. The organic amendments allowed the growth of L. perenne in the soil, thus indicating improvement of soil conditions, but elevated TEs availability in the soil led to toxicity symptoms and abnormally high TEs concentrations in the plants. An evaluation of the functioning and ecotoxicological risks of the remediated soils is reported in part II: this allows verification of the viability of the amendments for remediation strategies.


Subject(s)
Calcium Compounds/pharmacology , Fertilizers , Manure , Mining , Oxides/pharmacology , Soil/chemistry , Animals , Biodegradation, Environmental/drug effects , Biological Transport/drug effects , Calcium Compounds/chemistry , Hydrogen-Ion Concentration , Lolium/drug effects , Lolium/metabolism , Oxides/chemistry , Porosity , Risk , Soil Pollutants/chemistry , Soil Pollutants/isolation & purification , Soil Pollutants/metabolism , Solubility , Swine , Water/chemistry
20.
J Hazard Mater ; 268: 68-76, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24468528

ABSTRACT

The efficiency of a remediation strategy was evaluated in a mine soil highly contaminated with trace elements (TEs) by microbiological, ecotoxicological and physicochemical parameters of the soil and soil solution (extracted in situ), as a novel and integrative methodology for assessing recovery of soil health. A 2.5-year field phytostabilisation experiment was carried out using olive mill-waste compost, pig slurry and hydrated lime as amendments, and a native halophytic shrub (Atriplex halimus L.). Comparing with non-treated soil, the addition of the amendments increased soil pH and reduced TEs availability, favoured the development of a sustainable vegetation cover (especially the organic materials), stimulated soil microorganisms (increasing microbial biomass, activity and functional diversity, and reducing stress) and reduced direct and indirect soil toxicity (i.e., its potential associated risks). Therefore, under semi-arid conditions, the use of compost and pig slurry with A. halimus is an effective phytostabilisation strategy to improve soil health of nutrient-poor soils with high TEs concentrations, by improving the habitat function of the soil ecosystem, the reactivation of the biogeochemical cycles of essential nutrients, and the reduction of TEs dissemination and their environmental impact.


Subject(s)
Atriplex/growth & development , Biodegradation, Environmental , Soil Pollutants/isolation & purification , Soil/chemistry , Trace Elements/isolation & purification , Biomass , Fertilizers , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...