Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 13: 1206037, 2023.
Article in English | MEDLINE | ID: mdl-37645379

ABSTRACT

Obligate intracellular pathogens occupy one of two niches - free in the host cell cytoplasm or confined in a membrane-bound vacuole. Pathogens occupying membrane-bound vacuoles are sequestered from the innate immune system and have an extra layer of protection from antimicrobial drugs. However, this lifestyle presents several challenges. First, the bacteria must obtain membrane or membrane components to support vacuole expansion and provide space for the increasing bacteria numbers during the log phase of replication. Second, the vacuole microenvironment must be suitable for the unique metabolic needs of the pathogen. Third, as most obligate intracellular bacterial pathogens have undergone genomic reduction and are not capable of full metabolic independence, the bacteria must have mechanisms to obtain essential nutrients and resources from the host cell. Finally, because they are separated from the host cell by the vacuole membrane, the bacteria must possess mechanisms to manipulate the host cell, typically through a specialized secretion system which crosses the vacuole membrane. While there are common themes, each bacterial pathogen utilizes unique approach to establishing and maintaining their intracellular niches. In this review, we focus on the vacuole-bound intracellular niches of Anaplasma phagocytophilum, Ehrlichia chaffeensis, Chlamydia trachomatis, and Coxiella burnetii.


Subject(s)
Anaplasma phagocytophilum , Coxiella burnetii , Ehrlichia chaffeensis , Vacuoles , Chlamydia trachomatis
2.
bioRxiv ; 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36993319

ABSTRACT

Coxiella burnetii is a highly infectious pathogen that causes Q fever, a leading cause of culture-negative endocarditis. Coxiella first targets alveolar macrophages and forms a phagolysosome-like compartment called the Coxiella-Containing Vacuole (CCV). Successful host cell infection requires the Type 4B Secretion System (T4BSS), which translocates bacterial effector proteins across the CCV membrane into the host cytoplasm, where they manipulate numerous cell processes. Our prior transcriptional studies revealed that Coxiella T4BSS blocks IL-17 signaling in macrophages. Given that IL-17 is known to protect against pulmonary pathogens, we hypothesize that C. burnetii T4BSS downregulates intracellular IL-17 signaling to evade the host immune response and promote bacterial pathogenesis. Using a stable IL-17 promoter reporter cell line, we confirmed that Coxiella T4BSS blocks IL-17 transcription activation. Assessment of the phosphorylation state of NF-κB, MAPK, and JNK revealed that Coxiella downregulates IL-17 activation of these proteins. Using ACT1 knockdown and IL-17RA or TRAF6 knockout cells, we next determined that IL17RA-ACT1-TRAF6 pathway is essential for the IL-17 bactericidal effect in macrophages. In addition, macrophages stimulated with IL-17 generate higher levels of reactive oxygen species, which is likely connected to the bactericidal effect of IL-17. However, C. burnetii T4SS effector proteins block the IL-17-mediated oxidative stress, suggesting that Coxiella blocks IL-17 signaling to avoid direct killing by the macrophages.

3.
mBio ; 13(1): e0307321, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35073737

ABSTRACT

Coxiella burnetii replicates in a phagolysosome-like vacuole called the Coxiella-containing vacuole (CCV). While host cholesterol readily traffics to the CCV, cholesterol accumulation leads to CCV acidification and bacterial death. Thus, bacterial regulation of CCV cholesterol content is essential for Coxiella pathogenesis. Coxiella expresses a sterol-modifying protein, Stmp1, that may function to lower CCV cholesterol through enzymatic modification. Using an Stmp1 knockout (Δstmp1), we determined that Stmp1 is not essential for axenic growth. Inside host cells, however, Δstmp1 mutant bacteria form smaller CCVs which accumulate cholesterol, preferentially fuse with lysosomes, and become more acidic, correlating with a significant growth defect. However, in cholesterol-free cells, Δstmp1 mutant bacteria grow similarly to wild-type bacteria but are hypersensitive to cholesterol supplementation. To better understand the underlying mechanism behind the Δstmp1 mutant phenotype, we performed sterol profiling. Surprisingly, we found that Δstmp1 mutant-infected macrophages accumulated the potent cholesterol homeostasis regulator 25-hydroxycholesterol (25-HC). We next determined whether dysregulated 25-HC alters Coxiella infection by treating wild-type Coxiella-infected cells with 25-HC. Similar to the Δstmp1 mutant phenotype, 25-HC increased CCV proteolytic activity and inhibited bacterial growth. Collectively, these data indicate that Stmp1 alters host cholesterol metabolism and is essential to establish a mature CCV which supports Coxiella growth. IMPORTANCE Coxiella burnetii is the causative agent of human Q fever, an emerging infectious disease and significant cause of culture-negative endocarditis. Acute infections are often undiagnosed, there are no licensed vaccines in the United States, and chronic Q fever requires a prolonged antibiotic treatment. Therefore, new treatment and preventive options are critically needed. Coxiella is an obligate intracellular bacterium that replicates within a large acidic phagolysosome-like compartment, the Coxiella-containing vacuole (CCV). We previously discovered that cholesterol accumulation in the CCV increases its acidification, leading to bacterial death. Therefore, in order to survive in this harsh environment, Coxiella likely regulates CCV cholesterol levels. Here, we found that Coxiella sterol modifying protein (Stmp1) facilitates bacterial growth by reducing CCV cholesterol and host cell 25-hydroxycholesterol (25-HC) levels, which prevents excessive CCV fusion with host lysosomes and CCV acidification. This study establishes that Stmp1-mediated regulation of host cholesterol homeostasis is essential for Coxiella intracellular survival.


Subject(s)
Coxiella burnetii , Q Fever , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cholesterol/metabolism , Coxiella burnetii/genetics , Host-Pathogen Interactions/physiology , Q Fever/metabolism , Sterols/metabolism , Vacuoles/metabolism , HeLa Cells
4.
Respir Care ; 66(1): 113-119, 2021 01.
Article in English | MEDLINE | ID: mdl-32962996

ABSTRACT

BACKGROUND: Low airway surface pH is associated with many airway diseases, impairs antimicrobial host defense, and worsens airway inflammation. Inhaled Optate is designed to safely raise airway surface pH and is well tolerated in humans. Raising intracellular pH partially prevents activation of SARS-CoV-2 in primary normal human airway epithelial (NHAE) cells, decreasing viral replication by several mechanisms. METHODS: We grew primary NHAE cells from healthy subjects, infected them with SARS-CoV-2 (isolate USA-WA1/2020), and used clinical Optate at concentrations used in humans in vivo to determine whether Optate would prevent viral infection and replication. Cells were pretreated with Optate or placebo prior to infection (multiplicity of infection = 1), and viral replication was determined with plaque assay and nucleocapsid (N) protein levels. Healthy human subjects also inhaled Optate as part of a Phase 2a safety trial. RESULTS: Optate almost completely prevented viral replication at each time point between 24 h and 120 h, relative to placebo, on both plaque assay and N protein expression (P < .001). Mechanistically, Optate inhibited expression of major endosomal trafficking genes and raised NHAE intracellular pH. Optate had no effect on NHAE cell viability at any time point. Inhaled Optate was well tolerated in 10 normal subjects, with no change in lung function, vital signs, or oxygenation. CONCLUSIONS: Inhaled Optate may be well suited for a clinical trial in patients with pulmonary SARS-CoV-2 infection. However, it is vitally important for patient safety that formulations designed for inhalation with regard to pH, isotonicity, and osmolality be used. An inhalational treatment that safely prevents SARS-CoV-2 viral replication could be helpful for treating patients with pulmonary SARS-CoV-2 infection.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Epithelial Cells/drug effects , Glycine/pharmacology , Isotonic Solutions/pharmacology , Lung/drug effects , SARS-CoV-2 , Virus Replication/drug effects , Administration, Inhalation , Antiviral Agents/administration & dosage , Cells, Cultured/drug effects , Glycine/administration & dosage , Healthy Volunteers , Humans , Hydrogen-Ion Concentration/drug effects , Isotonic Solutions/administration & dosage
5.
PLoS Pathog ; 15(12): e1007855, 2019 12.
Article in English | MEDLINE | ID: mdl-31869379

ABSTRACT

Upon host cell infection, the obligate intracellular bacterium Coxiella burnetii resides and multiplies within the Coxiella-Containing Vacuole (CCV). The nascent CCV progresses through the endosomal maturation pathway into a phagolysosome, acquiring endosomal and lysosomal markers, as well as acidic pH and active proteases and hydrolases. Approximately 24-48 hours post infection, heterotypic fusion between the CCV and host endosomes/lysosomes leads to CCV expansion and bacterial replication in the mature CCV. Initial CCV acidification is required to activate C. burnetii metabolism and the Type 4B Secretion System (T4BSS), which secretes effector proteins required for CCV maturation. However, we found that the mature CCV is less acidic (pH~5.2) than lysosomes (pH~4.8). Further, inducing CCV acidification to pH~4.8 causes C. burnetii lysis, suggesting C. burnetii actively regulates pH of the mature CCV. Because heterotypic fusion with host endosomes/lysosomes may influence CCV pH, we investigated endosomal maturation in cells infected with wildtype (WT) or T4BSS mutant (ΔdotA) C. burnetii. In WT-infected cells, we observed a significant decrease in proteolytically active, LAMP1-positive endolysosomal vesicles, compared to mock or ΔdotA-infected cells. Using a ratiometric assay to measure endosomal pH, we determined that the average pH of terminal endosomes in WT-infected cells was pH~5.8, compared to pH~4.75 in mock and ΔdotA-infected cells. While endosomes progressively acidified from the periphery (pH~5.5) to the perinuclear area (pH~4.7) in both mock and ΔdotA-infected cells, endosomes did not acidify beyond pH~5.2 in WT-infected cells. Finally, increasing lysosomal biogenesis by overexpressing the transcription factor EB resulted in smaller, more proteolytically active CCVs and a significant decrease in C. burnetii growth, indicating host lysosomes are detrimental to C. burnetii. Overall, our data suggest that C. burnetii inhibits endosomal maturation to reduce the number of proteolytically active lysosomes available for heterotypic fusion with the CCV, possibly as a mechanism to regulate CCV pH.


Subject(s)
Bacterial Proteins/metabolism , Biological Transport/physiology , Coxiella burnetii/growth & development , Endosomes/metabolism , Adult , Aged , Female , Host-Pathogen Interactions/physiology , Humans , Macrophages/metabolism , Male , Middle Aged
6.
Infect Immun ; 86(10)2018 10.
Article in English | MEDLINE | ID: mdl-30061378

ABSTRACT

Coxiella burnetii is an obligate intracellular bacterium and the etiological agent of Q fever. Successful host cell infection requires the Coxiella type IVB secretion system (T4BSS), which translocates bacterial effector proteins across the vacuole membrane into the host cytoplasm, where they manipulate a variety of cell processes. To identify host cell targets of Coxiella T4BSS effector proteins, we determined the transcriptome of murine alveolar macrophages infected with a Coxiella T4BSS effector mutant. We identified a set of inflammatory genes that are significantly upregulated in T4BSS mutant-infected cells compared to mock-infected cells or cells infected with wild-type (WT) bacteria, suggesting that Coxiella T4BSS effector proteins downregulate the expression of these genes. In addition, the interleukin-17 (IL-17) signaling pathway was identified as one of the top pathways affected by the bacteria. While previous studies demonstrated that IL-17 plays a protective role against several pathogens, the role of IL-17 during Coxiella infection is unknown. We found that IL-17 kills intracellular Coxiella in a dose-dependent manner, with the T4BSS mutant exhibiting significantly more sensitivity to IL-17 than WT bacteria. In addition, quantitative PCR confirmed the increased expression of IL-17 downstream signaling genes in T4BSS mutant-infected cells compared to WT- or mock-infected cells, including the proinflammatory cytokine genes Il1a, Il1b, and Tnfa, the chemokine genes Cxcl2 and Ccl5, and the antimicrobial protein gene Lcn2 We further confirmed that the Coxiella T4BSS downregulates macrophage CXCL2/macrophage inflammatory protein 2 and CCL5/RANTES protein levels following IL-17 stimulation. Together, these data suggest that Coxiella downregulates IL-17 signaling in a T4BSS-dependent manner in order to escape the macrophage immune response.


Subject(s)
Coxiella burnetii/metabolism , Interleukin-17/genetics , Macrophages/microbiology , Q Fever/genetics , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chemokine CXCL2/genetics , Chemokine CXCL2/immunology , Coxiella burnetii/genetics , Host-Pathogen Interactions , Humans , Interleukin-1/genetics , Interleukin-1/immunology , Interleukin-17/immunology , Macrophages/metabolism , Mice, Inbred C57BL , Q Fever/immunology , Q Fever/microbiology , Signal Transduction , Type IV Secretion Systems/genetics , Type IV Secretion Systems/metabolism
7.
Article in English | MEDLINE | ID: mdl-28529926

ABSTRACT

Cholesterol is a multifunctional lipid that plays important metabolic and structural roles in the eukaryotic cell. Despite having diverse lifestyles, the obligate intracellular bacterial pathogens Chlamydia, Coxiella, Anaplasma, Ehrlichia, and Rickettsia all target cholesterol during host cell colonization as a potential source of membrane, as well as a means to manipulate host cell signaling and trafficking. To promote host cell entry, these pathogens utilize cholesterol-rich microdomains known as lipid rafts, which serve as organizational and functional platforms for host signaling pathways involved in phagocytosis. Once a pathogen gains entrance to the intracellular space, it can manipulate host cholesterol trafficking pathways to access nutrient-rich vesicles or acquire membrane components for the bacteria or bacteria-containing vacuole. To acquire cholesterol, these pathogens specifically target host cholesterol metabolism, uptake, efflux, and storage. In this review, we examine the strategies obligate intracellular bacterial pathogens employ to manipulate cholesterol during host cell colonization. Understanding how obligate intracellular pathogens target and use host cholesterol provides critical insight into the host-pathogen relationship.


Subject(s)
Bacteria/metabolism , Biological Transport/physiology , Cholesterol/metabolism , Cytoplasm/metabolism , Host-Pathogen Interactions/physiology , Anaplasma/metabolism , Anaplasma/pathogenicity , Bacteria/pathogenicity , Chlamydia/metabolism , Chlamydia/pathogenicity , Cholesterol/physiology , Coxiella/metabolism , Coxiella/pathogenicity , Ehrlichia/metabolism , Ehrlichia/pathogenicity , Eukaryotic Cells/metabolism , Humans , Lipid Droplets , Membrane Microdomains/metabolism , Phagocytosis , Rickettsia/metabolism , Rickettsia/pathogenicity , Vacuoles/metabolism
8.
Acta Trop ; 157: 42-53, 2016 May.
Article in English | MEDLINE | ID: mdl-26827742

ABSTRACT

Trypanosoma cruzi has high biological and biochemical diversity and variable tissue tropism. Here we aimed to verify the kinetics of cytokine and chemokine in situ secretion in animals infected with two distinct T. cruzi strains after oral inoculation. Also, we investigated parasite migration, residence and pathological damage in stomach, heart and spleen. Our results showed that host immune response against T. cruzi infection is an intricate phenomenon that depends on the parasite strain, on the infected organ and on the time point of the infection. We believe that a wide comprehension of host immune response will potentially provide basis for the development of immunotherapeutic strategies in order to clear parasitism and minimize tissue injury. In this context, we find that KC poses as a possible tool to be used.


Subject(s)
Chagas Disease/immunology , Chagas Disease/parasitology , Chemokines/metabolism , Cytokines/metabolism , Histocompatibility Antigens Class II/metabolism , Trypanosoma cruzi/immunology , Animals , Chagas Disease/veterinary , Female , Heart/parasitology , Mice , RNA, Messenger/metabolism , Spleen/parasitology , Stomach/parasitology
9.
PLoS One ; 7(12): e51384, 2012.
Article in English | MEDLINE | ID: mdl-23251513

ABSTRACT

BACKGROUND: P21 is a secreted protein expressed in all developmental stages of Trypanosoma cruzi. The aim of this study was to determine the effect of the recombinant protein based on P21 (P21-His(6)) on inflammatory macrophages during phagocytosis. FINDINGS: Our results showed that P21-His(6) acts as a phagocytosis inducer by binding to CXCR4 chemokine receptor and activating actin polymerization in a way dependent onthe PI3-kinase signaling pathway. CONCLUSIONS: Thus, our results shed light on the notion that native P21 is a component related to T. cruzi evasion from the immune response and that CXCR4 may be involved in phagocytosis. P21-His(6) represents an important experimental control tool to study phagocytosis signaling pathways of different intracellular parasites and particles.


Subject(s)
Phagocytosis , Protozoan Proteins/metabolism , Trypanosoma cruzi/metabolism , Animals , Mice , Mice, Inbred C57BL , Protein Binding , Receptors, CXCR4/metabolism , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...