Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag Res ; : 734242X231200744, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37791483

ABSTRACT

To evaluate the potential of compost based on municipal solid waste (MSW) and 20% legume pruning under a pyrolysis process, generated products, including solids (biochar), liquids (bio-oil), and gases (non-condensable gases), through experimentation in a pilot plant with a fluidized bed reactor at 450°C and gas chromatography/mass spectrometry have been analysed. In addition, the compost kinetic behaviour by thermogravimetric analysis (TGA), using the Flynn-Wall-Ozawa (FWO) method, has been investigated. Four different reaction zones, associated with lignocellulosic materials (hemicellulose, cellulose, and lignin) with a first step for water evaporation, in TGA curve have been observed. A biochar with low stability and aromaticity, considering high and low O/C and H/C ratios, respectively, has been obtained. The obtained pyrolytic liquids contain a high concentration of phenolic compounds because of a significant presence of lignins and other high molecular weight compounds in the original material. Moreover, the generated non-condensable gases consist mainly of short-chain compounds, such as alcohols, aldehydes, and alkenes produced from hemicellulose, cellulose, and proteins.

2.
Heliyon ; 9(7): e17943, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37539151

ABSTRACT

Leucaena leucocephala is a fast-growing leguminous biomass with great energetical and value-added chemical compounds potential (saccharides, biogas, bio-oil, etc.). Using the thermogravimetric and derivative thermogravimetric curves, the different trends followed by L. leucocephala during pyrolysis, 0.25 equivalence ratio (ER) of gasification, 0.50 equivalence ratio of gasification and combustion were analyzed, and the activation energies were obtained by Distributed Activation Energy Model (DAEM) method. Gas samples were collected through adsorption tubes during the gasification at 0.25 ER and 0.50 ER to observe the distribution of the main chemical products in this process by gas chromatography/mass spectrometry and were compared with pyrolysis products. It was found that small amounts of oxygen have changes in the kinetics of the process, leading to significant decreases in the activation energy at the beginning of the degradation of components such as cellulose (from 170 to 135 kJ mol-1 at 0.25 conversion at 0.50 ER gasification). The activation energy of lignin disintegration was also reduced (342 kJ mol-1), assimilating the beginnings of gasification processes such as the Boudouard reaction. 0.50 ER gasification is potentially an interesting process to obtain quality bio-oil, since a large amount of hexane is detected (44.96%), and value-added oxygenated intermediates such as alcohols and glycols. Gasification at 0.25 ER, on the other hand, is much more similar to pyrolysis, obtaining a wide variety of short-chain compounds resulting from the disintegration of the main lignocellulosic components, especially ketones such as 1-hydroxypropan-2-one (19.48%), and notable amount of furans and anhydrosugars like d-allose (5.50%).

SELECTION OF CITATIONS
SEARCH DETAIL
...