Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
2.
Nature ; 621(7980): 760-766, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37648863

ABSTRACT

California has experienced enhanced extreme wildfire behaviour in recent years1-3, leading to substantial loss of life and property4,5. Some portion of the change in wildfire behaviour is attributable to anthropogenic climate warming, but formally quantifying this contribution is difficult because of numerous confounding factors6,7 and because wildfires are below the grid scale of global climate models. Here we use machine learning to quantify empirical relationships between temperature (as well as the influence of temperature on aridity) and the risk of extreme daily wildfire growth (>10,000 acres) in California and find that the influence of temperature on the risk is primarily mediated through its influence on fuel moisture. We use the uncovered relationships to estimate the changes in extreme daily wildfire growth risk under anthropogenic warming by subjecting historical fires from 2003 to 2020 to differing background climatological temperatures and aridity conditions. We find that the influence of anthropogenic warming on the risk of extreme daily wildfire growth varies appreciably on a fire-by-fire and day-by-day basis, depending on whether or not climate warming pushes conditions over certain thresholds of aridity, such as 1.5 kPa of vapour-pressure deficit and 10% dead fuel moisture. So far, anthropogenic warming has enhanced the aggregate expected frequency of extreme daily wildfire growth by 25% (5-95 range of 14-36%), on average, relative to preindustrial conditions. But for some fires, there was approximately no change, and for other fires, the enhancement has been as much as 461%. When historical fires are subjected to a range of projected end-of-century conditions, the aggregate expected frequency of extreme daily wildfire growth events increases by 59% (5-95 range of 47-71%) under a low SSP1-2.6 emissions scenario compared with an increase of 172% (5-95 range of 156-188%) under a very high SSP5-8.5 emissions scenario, relative to preindustrial conditions.


Subject(s)
Global Warming , Temperature , Wildfires , California , Climate Models , Droughts/statistics & numerical data , Global Warming/statistics & numerical data , Human Activities , Humidity , Machine Learning , Risk Assessment , Wildfires/statistics & numerical data , Humans
3.
Cancers (Basel) ; 13(22)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34831011

ABSTRACT

The last decade has seen significant progress in understanding how the genome is organized spatially within interphase nuclei. Recent analyses have confirmed earlier molecular cytogenetic studies on chromosome positioning within interphase nuclei and provided new information about the topologically associated domains (TADs). Examining the nuances of how genomes are organized within interphase nuclei will provide information fundamental to understanding gene regulation and expression in health and disease. Indeed, the radial spatial positioning of individual gene loci within nuclei has been associated with up- and down-regulation of specific genes, and disruption of normal genome organization within nuclei will result in compromised cellular health. In cancer cells, where reorganization of the nuclear architecture may occur in the presence of chromosomal rearrangements such as translocations, inversions, or deletions, gene repositioning can change their expression. To date, very few studies have focused on radial gene positioning and the correlation to gene expression in cancers. Further investigations would improve our understanding of the biological mechanisms at the basis of cancer and, in particular, in leukemia initiation and progression, especially in those cases where the molecular consequences of chromosomal rearrangements are still unclear. In this review, we summarize the main milestones in the field of genome organization in the nucleus and the alterations to this organization that can lead to cancer diseases.

4.
Biogerontology ; 20(3): 337-358, 2019 06.
Article in English | MEDLINE | ID: mdl-31041622

ABSTRACT

Hutchinson-Gilford progeria syndrome (HGPS) is a rare, premature ageing syndrome in children. HGPS is normally caused by a mutation in the LMNA gene, encoding nuclear lamin A. The classical mutation in HGPS leads to the production of a toxic truncated version of lamin A, progerin, which retains a farnesyl group. Farnesyltransferase inhibitors (FTI), pravastatin and zoledronic acid have been used in clinical trials to target the mevalonate pathway in HGPS patients to inhibit farnesylation of progerin, in order to reduce its toxicity. Some other compounds that have been suggested as treatments include rapamycin, IGF1 and N-acetyl cysteine (NAC). We have analysed the distribution of prelamin A, lamin A, lamin A/C, progerin, lamin B1 and B2 in nuclei of HGPS cells before and after treatments with these drugs, an FTI and a geranylgeranyltransferase inhibitor (GGTI) and FTI with pravastatin and zoledronic acid in combination. Confirming other studies prelamin A, lamin A, progerin and lamin B2 staining was different between control and HGPS fibroblasts. The drugs that reduced progerin staining were FTI, pravastatin, zoledronic acid and rapamycin. However, drugs affecting the mevalonate pathway increased prelamin A, with only FTI reducing internal prelamin A foci. The distribution of lamin A in HGPS cells was improved with treatments of FTI, pravastatin and FTI + GGTI. All treatments reduced the number of cells displaying internal speckles of lamin A/C and lamin B2. Drugs targeting the mevalonate pathway worked best for progerin reduction, with zoledronic acid removing internal progerin speckles. Rapamycin and NAC, which impact on the MTOR pathway, both reduced both pools of progerin without increasing prelamin A in HGPS cell nuclei.


Subject(s)
Lamin Type A/metabolism , Mevalonic Acid/metabolism , Progeria/metabolism , Cell Line , Enzyme Inhibitors/pharmacology , Humans , Progeria/pathology
5.
J Biol Chem ; 294(10): 3720-3734, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30598509

ABSTRACT

Peroxisome proliferator-activated receptor α (PPARα) is a transcriptional regulator of lipid metabolism. GW7647 is a potent PPARα agonist that must reach the nucleus to activate this receptor. In cells expressing human fatty acid-binding protein 1 (FABP1), GW7647 treatment increases FABP1's nuclear localization and potentiates GW7647-mediated PPARα activation; GW7647 is less effective in cells that do not express FABP1. To elucidate the underlying mechanism, here we substituted residues in FABP1 known to dictate lipid signaling by other intracellular lipid-binding proteins. Substitutions of Lys-20 and Lys-31 to Ala in the FABP1 helical cap affected neither its nuclear localization nor PPARα activation. In contrast, Ala substitution of Lys-57, Glu-77, and Lys-96, located in the loops adjacent to the ligand-binding portal region, abolished both FABP1 nuclear localization and GW7647-induced PPARα activation but had little effect on GW7647-FABP1 binding affinity. Using solution NMR spectroscopy, we determined the WT FABP1 structure and analyzed the dynamics in the apo and GW7647-bound structures of both the WT and the K57A/E77A/K96A triple mutant. We found that GW7647 binding causes little change in the FABP1 backbone, but solvent exposes several residues in the loops around the portal region, including Lys-57, Glu-77, and Lys-96. These residues also become more solvent-exposed upon binding of FABP1 with the endogenous PPARα agonist oleic acid. Together with previous observations, our findings suggest that GW7647 binding stabilizes a FABP1 conformation that promotes its interaction with PPARα. We conclude that full PPARα agonist activity of GW7647 requires FABP1-dependent transport and nuclear localization processes.


Subject(s)
Butyrates/pharmacology , Fatty Acid-Binding Proteins/chemistry , Fatty Acid-Binding Proteins/metabolism , PPAR alpha/agonists , Phenylurea Compounds/pharmacology , Butyrates/metabolism , Fatty Acid-Binding Proteins/genetics , Humans , Ligands , Models, Molecular , Mutation , Phenylurea Compounds/metabolism , Protein Conformation/drug effects
6.
Int J Wildland Fire ; 28(8): 570, 2019.
Article in English | MEDLINE | ID: mdl-32632343

ABSTRACT

There is an urgent need for next-generation smoke research and forecasting (SRF) systems to meet the challenges of the growing air quality, health, and safety concerns associated with wildland fire emissions. This review paper presents simulations and experiments of hypothetical prescribed burns with a suite of selected fire behavior and smoke models and identifies major issues for model improvement and the most critical observational needs. The results are used to understand the new and improved capability required for the next-generation SRF systems and to support the design of the Fire and Smoke Model Evaluation Experiment (FASMEE) and other field campaigns. The next-generation SRF systems should have more coupling of fire, smoke, and atmospheric processes to better simulate and forecast vertical smoke distributions and multiple sub-plumes, dynamical and high-resolution fire processes, and local and regional smoke chemistry during day and night. The development of the coupling capability requires comprehensive and spatially and temporally integrated measurements across the various disciplines to characterize flame and energy structure (e.g., individual cells, vertical heat profile and the height of well mixing flaming gases), smoke structure (vertical distributions and multiple sub-plumes), ambient air processes (smoke eddy, entrainment and radiative effects of smoke aerosols), fire emissions (for different fuel types and combustion conditions from flaming to residual smoldering), as well as night-time processes (smoke drainage and super-fog formation).

7.
Atmosphere (Basel) ; 10(2): 66, 2019.
Article in English | MEDLINE | ID: mdl-32704394

ABSTRACT

The Fire and Smoke Model Evaluation Experiment (FASMEE) is designed to collect integrated observations from large wildland fires and provide evaluation datasets for new models and operational systems. Wildland fire, smoke dispersion, and atmospheric chemistry models have become more sophisticated, and next-generation operational models will require evaluation datasets that are coordinated and comprehensive for their evaluation and advancement. Integrated measurements are required, including ground-based observations of fuels and fire behavior, estimates of fire-emitted heat and emissions fluxes, and observations of near-source micrometeorology, plume properties, smoke dispersion, and atmospheric chemistry. To address these requirements the FASMEE campaign design includes a study plan to guide the suite of required measurements in forested sites representative of many prescribed burning programs in the southeastern United States and increasingly common high-intensity fires in the western United States. Here we provide an overview of the proposed experiment and recommendations for key measurements. The FASMEE study provides a template for additional large-scale experimental campaigns to advance fire science and operational fire and smoke models.

8.
Biogerontology ; 19(6): 579-602, 2018 12.
Article in English | MEDLINE | ID: mdl-29907918

ABSTRACT

Hutchinson-Gilford progeria syndrome (HGPS) is a rare and fatal premature ageing disease in children. HGPS is one of several progeroid syndromes caused by mutations in the LMNA gene encoding the nuclear structural proteins lamins A and C. In classic HGPS the mutation G608G leads to the formation of a toxic lamin A protein called progerin. During post-translational processing progerin remains farnesylated owing to the mutation interfering with a step whereby the farnesyl moiety is removed by the enzyme ZMPSTE24. Permanent farnesylation of progerin is thought to be responsible for the proteins toxicity. Farnesyl is generated through the mevalonate pathway and three drugs that interfere with this pathway and hence the farnesylation of proteins have been administered to HGPS children in clinical trials. These are a farnesyltransferase inhibitor (FTI), statin and a bisphosphonate. Further experimental studies have revealed that other drugs such as N-acetyl cysteine, rapamycin and IGF-1 may be of use in treating HGPS through other pathways. We have shown previously that FTIs restore chromosome positioning in interphase HGPS nuclei. Mis-localisation of chromosomes could affect the cells ability to regulate proper genome function. Using nine different drug treatments representing drug regimes in the clinic we have shown that combinatorial treatments containing FTIs are most effective in restoring specific chromosome positioning towards the nuclear periphery and in tethering telomeres to the nucleoskeleton. On the other hand, rapamycin was found to be detrimental to telomere tethering, it was, nonetheless, the most effective at inducing DNA damage repair, as revealed by COMET analyses.


Subject(s)
DNA Damage/drug effects , Diphosphonates/therapeutic use , Farnesyltranstransferase/antagonists & inhibitors , Genome, Human/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Progeria/drug therapy , Sirolimus/therapeutic use , Cell Line , Comet Assay , Diphosphonates/pharmacology , Drug Therapy, Combination , Female , Fibroblasts/drug effects , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Insulin-Like Growth Factor I/pharmacology , Lamin Type A/genetics , Lamins/genetics , Membrane Proteins/genetics , Metalloendopeptidases/genetics , Mutation , Progeria/genetics , Progeria/metabolism , Protein Processing, Post-Translational , Sirolimus/pharmacology
9.
J Biol Chem ; 292(51): 21149-21158, 2017 12 22.
Article in English | MEDLINE | ID: mdl-28972140

ABSTRACT

αß T cell receptors (TCRs) interact with peptides bound to the polymorphic major histocompatibility complex class Ia (MHC-Ia) and class II (MHC-II) molecules as well as the essentially monomorphic MHC class Ib (MHC-Ib) molecules. Although there is a large amount of information on how TCRs engage with MHC-Ia and MHC-II, our understanding of TCR/MHC-Ib interactions is very limited. Infection with cytomegalovirus (CMV) can elicit a CD8+ T cell response restricted by the human MHC-Ib molecule human leukocyte antigen (HLA)-E and specific for an epitope from UL40 (VMAPRTLIL), which is characterized by biased TRBV14 gene usage. Here we describe an HLA-E-restricted CD8+ T cell able to recognize an allotypic variant of the UL40 peptide with a modification at position 8 (P8) of the peptide (VMAPRTLVL) that uses the TRBV9 gene segment. We report the structures of a TRBV9+ TCR in complex with the HLA-E molecule presenting the two peptides. Our data revealed that the TRBV9+ TCR adopts a different docking mode and molecular footprint atop HLA-E when compared with the TRBV14+ TCR-HLA-E ternary complex. Additionally, despite their differing V gene segment usage and different docking mechanisms, mutational analyses showed that the TCRs shared a conserved energetic footprint on the HLA-E molecule, focused around the peptide-binding groove. Hence, we provide new insights into how monomorphic MHC molecules interact with T cells.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Energy Metabolism , Histocompatibility Antigens Class I/metabolism , Models, Molecular , Receptors, Antigen, T-Cell, alpha-beta/agonists , Amino Acid Sequence , Binding Sites , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cells, Cultured , Clone Cells , Conserved Sequence , Crystallography, X-Ray , Epitope Mapping , Epitopes, T-Lymphocyte , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/genetics , Humans , Molecular Docking Simulation , Mutagenesis, Site-Directed , Mutation , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Conformation , Protein Interaction Domains and Motifs , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism , HLA-E Antigens
10.
Methods Mol Biol ; 1411: 387-406, 2016.
Article in English | MEDLINE | ID: mdl-27147055

ABSTRACT

The genome has a special relationship with the nuclear envelope in cells. Much of the genome is anchored at the nuclear periphery, tethered by chromatin binding proteins such nuclear lamins and other integral membrane proteins. Even though there are global assays such as DAM-ID or ChIP to assess what parts of the genome are associated with the nuclear envelope, it is also essential to be able to visualize regions of the genome in order to reveal their individual relationships with nuclear structures in single cells. This is executed by fluorescence in situ hybridization (FISH) in 2-dimensional flattened nuclei (2D-FISH) or 3-dimensionally preserved cells (3D-FISH) in combination with indirect immunofluorescence to reveal structural proteins. This chapter explains the protocols for 2D- and 3D-FISH in combination with indirect immunofluorescence and discusses options for image capture and analysis. Due to the nuclear envelope proteins being part of the non-extractable nucleoskeleton, we also describe how to prepare DNA halos through salt extraction and how they can be used to study genome behavior and association when combined with 2D-FISH.


Subject(s)
Cell Nucleus/metabolism , Genome , In Situ Hybridization, Fluorescence , Nuclear Envelope/metabolism , Biomarkers , Cells, Cultured , Chromatin/genetics , Chromatin/metabolism , DNA Probes , Ki-67 Antigen/metabolism , Microscopy, Fluorescence
11.
J Biol Chem ; 290(16): 10460-71, 2015 Apr 17.
Article in English | MEDLINE | ID: mdl-25759384

ABSTRACT

The engagement of natural killer cell immunoglobulin-like receptors (KIRs) with their target ligands, human leukocyte antigen (HLA) molecules, is a critical component of innate immunity. Structurally, KIRs typically have either two (D1-D2) or three (D0-D1-D2) extracellular immunoglobulin domains, with the D1 and D2 domain recognizing the α1 and α2 helices of HLA, respectively, whereas the D0 domain of the KIR3DLs binds a loop region flanking the α1 helix of the HLA molecule. KIR2DL4 is distinct from other KIRs (except KIR2DL5) in that it does not contain a D1 domain and instead has a D0-D2 arrangement. Functionally, KIR2DL4 is also atypical in that, unlike all other KIRs, KIR2DL4 has both activating and inhibitory signaling domains. Here, we determined the 2.8 Å crystal structure of the extracellular domains of KIR2DL4. Structurally, KIR2DL4 is reminiscent of other KIR2DL receptors, with the D0 and D2 adopting the C2-type immunoglobulin fold arranged with an acute elbow angle. However, KIR2DL4 self-associated via the D0 domain in a concentration-dependent manner and was observed as a tetramer in the crystal lattice by size exclusion chromatography, dynamic light scattering, analytical ultracentrifugation, and small angle x-ray scattering experiments. The assignment of residues in the D0 domain to forming the KIR2DL4 tetramer precludes an interaction with HLA akin to that observed for KIR3DL1. Accordingly, no interaction was observed to HLA by direct binding studies. Our data suggest that the unique functional properties of KIR2DL4 may be mediated by self-association of the receptor.


Subject(s)
HLA-B Antigens/chemistry , HLA-G Antigens/chemistry , Receptors, KIR2DL4/chemistry , Amino Acid Sequence , Animals , Baculoviridae/genetics , Baculoviridae/metabolism , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , HLA-B Antigens/genetics , HLA-B Antigens/metabolism , HLA-G Antigens/genetics , HLA-G Antigens/metabolism , Models, Molecular , Molecular Sequence Data , Moths/cytology , Moths/metabolism , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary , Receptors, KIR2DL4/genetics , Receptors, KIR2DL4/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment
12.
J Immunol ; 188(1): 302-10, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22131332

ABSTRACT

The primary function of the monomorphic MHC class Ib molecule Qa-1(b) is to present peptides derived from the leader sequences of other MHC class I molecules for recognition by the CD94-NKG2 receptors expressed by NK and T cells. Whereas the mode of peptide presentation by its ortholog HLA-E, and subsequent recognition by CD94-NKG2A, is known, the molecular basis of Qa-1(b) function is unclear. We have assessed the interaction between Qa-1(b) and CD94-NKG2A and shown that they interact with an affinity of 17 µM. Furthermore, we have determined the structure of Qa-1(b) bound to the leader sequence peptide, Qdm (AMAPRTLLL), to a resolution of 1.9 Å and compared it with that of HLA-E. The crystal structure provided a basis for understanding the restricted peptide repertoire of Qa-1(b). Whereas the Qa-1(b-AMAPRTLLL) complex was similar to that of HLA-E, significant sequence and structural differences were observed between the respective Ag-binding clefts. However, the conformation of the Qdm peptide bound by Qa-1(b) was very similar to that of peptide bound to HLA-E. Although a number of conserved innate receptors can recognize heterologous ligands from other species, the structural differences between Qa-1(b) and HLA-E manifested in CD94-NKG2A ligand recognition being species specific despite similarities in peptide sequence and conformation. Collectively, our data illustrate the structural homology between Qa-1(b) and HLA-E and provide a structural basis for understanding peptide repertoire selection and the specificity of the interaction of Qa-1(b) with CD94-NKG2 receptors.


Subject(s)
Antigen Presentation/physiology , Histocompatibility Antigens Class I/chemistry , NK Cell Lectin-Like Receptor Subfamily C/chemistry , NK Cell Lectin-Like Receptor Subfamily D/chemistry , Peptides/chemistry , Animals , Binding Sites , Crystallography, X-Ray , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Mice , NK Cell Lectin-Like Receptor Subfamily C/genetics , NK Cell Lectin-Like Receptor Subfamily C/immunology , NK Cell Lectin-Like Receptor Subfamily D/genetics , NK Cell Lectin-Like Receptor Subfamily D/immunology , Peptides/genetics , Peptides/immunology , Protein Structure, Quaternary , Protein Structure, Tertiary , Species Specificity , Structural Homology, Protein , Structure-Activity Relationship , HLA-E Antigens
13.
Nature ; 479(7373): 401-5, 2011 Oct 23.
Article in English | MEDLINE | ID: mdl-22020283

ABSTRACT

Members of the killer cell immunoglobulin-like receptor (KIR) family, a large group of polymorphic receptors expressed on natural killer (NK) cells, recognize particular peptide-laden human leukocyte antigen (pHLA) class I molecules and have a pivotal role in innate immune responses. Allelic variation and extensive polymorphism within the three-domain KIR family (KIR3D, domains D0-D1-D2) affects pHLA binding specificity and is linked to the control of viral replication and the treatment outcome of certain haematological malignancies. Here we describe the structure of a human KIR3DL1 receptor bound to HLA-B*5701 complexed with a self-peptide. KIR3DL1 clamped around the carboxy-terminal end of the HLA-B*5701 antigen-binding cleft, resulting in two discontinuous footprints on the pHLA. First, the D0 domain, a distinguishing feature of the KIR3D family, extended towards ß2-microglobulin and abutted a region of the HLA molecule with limited polymorphism, thereby acting as an 'innate HLA sensor' domain. Second, whereas the D2-HLA-B*5701 interface exhibited a high degree of complementarity, the D1-pHLA-B*5701 contacts were suboptimal and accommodated a degree of sequence variation both within the peptide and the polymorphic region of the HLA molecule. Although the two-domain KIR (KIR2D) and KIR3DL1 docked similarly onto HLA-C and HLA-B respectively, the corresponding D1-mediated interactions differed markedly, thereby providing insight into the specificity of KIR3DL1 for discrete HLA-A and HLA-B allotypes. Collectively, in association with extensive mutagenesis studies at the KIR3DL1-pHLA-B*5701 interface, we provide a framework for understanding the intricate interplay between peptide variability, KIR3D and HLA polymorphism in determining the specificity requirements of this essential innate interaction that is conserved across primate species.


Subject(s)
HLA-B Antigens/chemistry , HLA-B Antigens/immunology , Receptors, KIR3DL1/chemistry , Receptors, KIR3DL1/immunology , Amino Acid Sequence , Binding Sites/genetics , HLA-B Antigens/genetics , Humans , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/immunology , Polymorphism, Genetic/genetics , Protein Structure, Tertiary , Receptors, KIR3DL1/genetics , Structure-Activity Relationship , beta 2-Microglobulin/chemistry , beta 2-Microglobulin/immunology
14.
Proc Natl Acad Sci U S A ; 107(23): 10608-13, 2010 Jun 08.
Article in English | MEDLINE | ID: mdl-20483993

ABSTRACT

alphabeta T cell receptors (TCRs) are genetically restricted to corecognize peptide antigens bound to self-major histocompatibility complex (pMHC) molecules; however, the basis for this MHC specificity remains unclear. Despite the current dogma, evaluation of the TCR-pMHC-I structural database shows that the nongermline-encoded complementarity-determining region (CDR)-3 loops often contact the MHC-I, and the germline-encoded CDR1 and -2 loops frequently participate in peptide-mediated interactions. Nevertheless, different TCRs adopt a roughly conserved docking mode over the pMHC-I, in which three MHC-I residues (65, 69, and 155) are invariably contacted by the TCR in one way or another. Nonetheless, the impact of mutations at these three positions, either individually or together, was not uniformly detrimental to TCR recognition of pHLA-B*0801 or pHLA-B*3508. Moreover, when TCR-pMHC-I recognition was impaired, this could be partially restored by expression of the CD8 coreceptor. The structure of a TCR-pMHC-I complex in which these three (65, 69, and 155) MHC-I positions were all mutated resulted in shifting of the TCR footprint relative to the cognate complex and formation of compensatory interactions. Collectively, our findings reveal the inherent adaptability of the TCR in maintaining peptide recognition while accommodating changes to the central docking site on the pMHC-I.


Subject(s)
Adaptive Immunity , Major Histocompatibility Complex , Receptors, Antigen, T-Cell/immunology , Cell Line, Tumor , Cytotoxicity, Immunologic , Databases, Genetic , Humans , Lymphocyte Activation , Models, Molecular , Mutation , Protein Structure, Quaternary , Protein Structure, Tertiary , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/genetics
15.
Proc Natl Acad Sci U S A ; 107(12): 5534-9, 2010 Mar 23.
Article in English | MEDLINE | ID: mdl-20212169

ABSTRACT

Residues within processed protein fragments bound to major histocompatibility complex class I (MHC-I) glycoproteins have been considered to function as a series of "independent pegs" that either anchor the peptide (p) to the MHC-I and/or interact with the spectrum of alphabeta-T-cell receptors (TCRs) specific for the pMHC-I epitope in question. Mining of the extensive pMHC-I structural database established that many self- and viral peptides show extensive and direct interresidue interactions, an unexpected finding that has led us to the idea of "constrained" peptides. Mutational analysis of two constrained peptides (the HLA B44 restricted self-peptide (B44DPalpha-EEFGRAFSF) and an H2-D(b) restricted influenza peptide (D(b)PA, SSLENFRAYV) demonstrated that the conformation of the prominently exposed arginine in both peptides was governed by interactions with MHC-I-orientated flanking residues from the peptide itself. Using reverse genetics in a murine influenza model, we revealed that mutation of an MHC-I-orientated residue (SSLENFRAYV --> SSLENARAYV) within the constrained PA peptide resulted in a diminished cytotoxic T lymphocyte (CTL) response and the recruitment of a limited pMHC-I specific TCR repertoire. Interactions between individual peptide positions can thus impose fine control on the conformation of pMHC-I epitopes, whereas the perturbation of such constraints can lead to a previously unappreciated mechanism of viral escape.


Subject(s)
Histocompatibility Antigens Class I/metabolism , T-Lymphocytes/immunology , Amino Acid Sequence , Amino Acid Substitution , Animals , Antigen Presentation , Epitopes/chemistry , Epitopes/genetics , Epitopes/metabolism , Female , H-2 Antigens/chemistry , H-2 Antigens/genetics , H-2 Antigens/metabolism , HLA-B Antigens/chemistry , HLA-B Antigens/genetics , HLA-B Antigens/metabolism , HLA-B44 Antigen , Histocompatibility Antigen H-2D , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/genetics , Humans , Ligands , Mice , Mice, Inbred C57BL , Models, Molecular , Mutagenesis, Site-Directed , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/immunology , Protein Conformation , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/immunology
16.
J Mol Biol ; 397(2): 467-80, 2010 Mar 26.
Article in English | MEDLINE | ID: mdl-20122941

ABSTRACT

The highly polymorphic major histocompatibility complex class Ia (MHC-Ia) molecules present a broad array of peptides to the clonotypically diverse alphabeta T-cell receptors. In contrast, MHC-Ib molecules exhibit limited polymorphism and bind a more restricted peptide repertoire, in keeping with their major role in innate immunity. Nevertheless, some MHC-Ib molecules do play a role in adaptive immunity. While human leukocyte antigen E (HLA-E), the MHC-Ib molecule, binds a very restricted repertoire of peptides, the peptide binding preferences of HLA-G, the class Ib molecule, are less stringent, although the basis by which HLA-G can bind various peptides is unclear. To investigate how HLA-G can accommodate different peptides, we compared the structure of HLA-G bound to three naturally abundant self-peptides (RIIPRHLQL, KGPPAALTL and KLPQAFYIL) and their thermal stabilities. The conformation of HLA-G(KGPPAALTL) was very similar to that of the HLA-G(RIIPRHLQL) structure. However, the structure of HLA-G(KLPQAFYIL) not only differed in the conformation of the bound peptide but also caused a small shift in the alpha2 helix of HLA-G. Furthermore, the relative stability of HLA-G was observed to be dependent on the nature of the bound peptide. These peptide-dependent effects on the substructure of the monomorphic HLA-G are likely to impact on its recognition by receptors of both innate and adaptive immune systems.


Subject(s)
HLA Antigens/chemistry , HLA Antigens/metabolism , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/metabolism , Crystallography, X-Ray , HLA-G Antigens , Humans , Models, Molecular , Protein Binding , Protein Conformation , Protein Stability , Protein Structure, Quaternary , Temperature
17.
Immunity ; 30(6): 777-88, 2009 Jun 19.
Article in English | MEDLINE | ID: mdl-19464197

ABSTRACT

Ligation of the alphabeta T cell receptor (TCR) by a specific peptide-loaded major histocompatibility complex (pMHC) molecule initiates T cell signaling via the CD3 complex. However, the initial events that link antigen recognition to T cell signal transduction remain unclear. Here we show, via fluorescence-based experiments and structural analyses, that MHC-restricted antigen recognition by the alphabeta TCR results in a specific conformational change confined to the A-B loop within the alpha chain of the constant domain (Calpha). The apparent affinity constant of this A-B loop movement mirrored that of alphabeta TCR-pMHC ligation and was observed in two alphabeta TCRs with distinct pMHC specificities. The Ag-induced A-B loop conformational change could be inhibited by fixing the juxtapositioning of the constant domains and was shown to be reversible upon pMHC disassociation. Notably, the loop movement within the Calpha domain, although specific for an agonist pMHC ligand, was not observed with a pMHC antagonist. Moreover, mutagenesis of residues within the A-B loop impaired T cell signaling in an in vitro system of antigen-specific TCR stimulation. Collectively, our findings provide a basis for the earliest molecular events that underlie Ag-induced T cell triggering.


Subject(s)
Antigens/chemistry , Receptors, Antigen, T-Cell, alpha-beta/chemistry , T-Lymphocytes/immunology , Animals , Antigens/immunology , Humans , Major Histocompatibility Complex/immunology , Mutation/genetics , Peptides/chemistry , Peptides/immunology , Protein Binding/immunology , Protein Structure, Tertiary , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology
18.
Immunity ; 30(2): 193-203, 2009 Feb 20.
Article in English | MEDLINE | ID: mdl-19167249

ABSTRACT

During selection of the T cell repertoire, the immune system navigates the subtle distinction between self-restriction and self-tolerance, yet how this is achieved is unclear. Here we describe how self-tolerance toward a trans-HLA (human leukocyte antigen) allotype shapes T cell receptor (TCR) recognition of an Epstein-Barr virus (EBV) determinant (FLRGRAYGL). The recognition of HLA-B8-FLRGRAYGL by two archetypal TCRs was compared. One was a publicly selected TCR, LC13, that is alloreactive with HLA-B44; the other, CF34, lacks HLA-B44 reactivity because it arises when HLA-B44 is coinherited in trans with HLA-B8. Whereas the alloreactive LC13 TCR docked at the C terminus of HLA-B8-FLRGRAYGL, the CF34 TCR docked at the N terminus of HLA-B8-FLRGRAYGL, which coincided with a polymorphic region between HLA-B8 and HLA-B44. The markedly contrasting footprints of the LC13 and CF34 TCRs provided a portrait of how self-tolerance shapes the specificity of TCRs selected into the immune repertoire.


Subject(s)
Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/immunology , Self Tolerance/immunology , Amino Acid Sequence , Antigens, Viral/chemistry , Antigens, Viral/immunology , Crystallography, X-Ray , HLA-B8 Antigen/chemistry , HLA-B8 Antigen/immunology , Herpesvirus 4, Human/chemistry , Herpesvirus 4, Human/immunology , Humans , Models, Molecular , Peptides/chemistry , Peptides/immunology , Protein Structure, Quaternary , Structural Homology, Protein , Surface Plasmon Resonance
19.
Cancer Res ; 69(3): 1046-54, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-19176376

ABSTRACT

The tumor antigen NY-ESO-1 is a promising cancer vaccine target. We describe here a novel HLA-B7-restricted NY-ESO-1 epitope, encompassing amino acids 60-72 (APRGPHGGAASGL), which is naturally presented by melanoma cells. The tumor epitope bound to HLA-B7 by bulging outward from the peptide-binding cleft. This bulged epitope was not an impediment to T-cell recognition, however, because four of six HLA-B7(+) melanoma patients vaccinated with NY-ESO-1 ISCOMATRIX vaccine generated a potent T-cell response to this determinant. Moreover, the response to this epitope was immunodominant in three of these patients and, unlike the T-cell responses to bulged HLA class I viral epitopes, the responding T cells possessed a remarkably broad TCR repertoire. Interestingly, HLA-B7(+) melanoma patients who did not receive the NY-ESO-1 ISCOMATRIX vaccine rarely generated a spontaneous T-cell response to this cryptic epitope, suggesting a lack of priming of such T cells in the natural anti-NY-ESO-1 response, which may be corrected by vaccination. Together, our results reveal several surprising aspects of antitumor immunity and have implications for cancer vaccine design.


Subject(s)
Antigens, Neoplasm/immunology , Cancer Vaccines/immunology , Immunodominant Epitopes/immunology , Melanoma/immunology , Membrane Proteins/immunology , Peptide Fragments/immunology , Alanine/genetics , Amino Acid Sequence , Amino Acid Substitution , Antigen Presentation , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/therapeutic use , Cell Line, Tumor , HLA-B Antigens/immunology , HLA-B7 Antigen , Humans , Lymphocyte Activation , Melanoma/therapy , Models, Molecular , Molecular Sequence Data , Protein Conformation
20.
J Exp Med ; 206(1): 209-19, 2009 Jan 16.
Article in English | MEDLINE | ID: mdl-19139173

ABSTRACT

Human leukocyte antigen (HLA) gene polymorphism plays a critical role in protective immunity, disease susceptibility, autoimmunity, and drug hypersensitivity, yet the basis of how HLA polymorphism influences T cell receptor (TCR) recognition is unclear. We examined how a natural micropolymorphism in HLA-B44, an important and large HLA allelic family, affected antigen recognition. T cell-mediated immunity to an Epstein-Barr virus determinant (EENLLDFVRF) is enhanced when HLA-B*4405 was the presenting allotype compared with HLA-B*4402 or HLA-B*4403, each of which differ by just one amino acid. The micropolymorphism in these HLA-B44 allotypes altered the mode of binding and dynamics of the bound viral epitope. The structure of the TCR-HLA-B*4405(EENLLDFVRF) complex revealed that peptide flexibility was a critical parameter in enabling preferential engagement with HLA-B*4405 in comparison to HLA-B*4402/03. Accordingly, major histocompatibility complex (MHC) polymorphism can alter the dynamics of the peptide-MHC landscape, resulting in fine-tuning of T cell responses between closely related allotypes.


Subject(s)
Epitopes, T-Lymphocyte/immunology , HLA-B Antigens/genetics , Polymorphism, Single Nucleotide , Receptors, Antigen, T-Cell/immunology , Amino Acid Substitution , Binding Sites , Complementarity Determining Regions/genetics , Complementarity Determining Regions/immunology , Epitopes, T-Lymphocyte/genetics , Epstein-Barr Virus Nuclear Antigens/immunology , HLA Antigens/genetics , HLA Antigens/metabolism , HLA-B Antigens/chemistry , HLA-B Antigens/metabolism , HLA-B44 Antigen , Humans , Hydrogen Bonding , Kinetics , Models, Molecular , Protein Binding , Protein Conformation , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , Recombinant Proteins/metabolism , T-Lymphocytes, Cytotoxic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...