Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
STAR Protoc ; 5(1): 102928, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38430519

ABSTRACT

Disease-relevant in vivo tumor models are essential tools for both discovery and translational research. Here, we describe a highly genetically tractable technique for generating immunocompetent somatic glioblastoma (GBM) mouse models using piggyBac transposition and CRISPR-Cas9-mediated gene editing in wild-type mice. We describe steps to deliver plasmids into subventricular zone endogenous neural stem cells by injection and electroporation, leading to the development of adult tumors that closely recapitulate the histopathological, molecular, and cellular features of human GBM. For complete details on the use and execution of this protocol, please refer to Garcia-Diaz et al.1.


Subject(s)
Glioblastoma , Neural Stem Cells , Mice , Humans , Animals , Lateral Ventricles/pathology , Glioblastoma/genetics , Glioblastoma/therapy , Glioblastoma/pathology , Gene Editing/methods , Plasmids , Disease Models, Animal
2.
Cell Rep ; 42(5): 112472, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37149862

ABSTRACT

Glioblastoma (GBM) recurrence originates from invasive margin cells that escape surgical debulking, but to what extent these cells resemble their bulk counterparts remains unclear. Here, we generated three immunocompetent somatic GBM mouse models, driven by subtype-associated mutations, to compare matched bulk and margin cells. We find that, regardless of mutations, tumors converge on common sets of neural-like cellular states. However, bulk and margin have distinct biology. Injury-like programs associated with immune infiltration dominate in the bulk, leading to the generation of lowly proliferative injured neural progenitor-like cells (iNPCs). iNPCs account for a significant proportion of dormant GBM cells and are induced by interferon signaling within T cell niches. In contrast, developmental-like trajectories are favored within the immune-cold margin microenvironment resulting in differentiation toward invasive astrocyte-like cells. These findings suggest that the regional tumor microenvironment dominantly controls GBM cell fate and biological vulnerabilities identified in the bulk may not extend to the margin residuum.


Subject(s)
Brain Neoplasms , Glioblastoma , Neural Stem Cells , Animals , Mice , Glioblastoma/genetics , Glioblastoma/pathology , Cell Differentiation , Tumor Microenvironment , Neural Stem Cells/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology
3.
Dev Cell ; 58(10): 836-846.e6, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37084728

ABSTRACT

Glioblastoma is thought to originate from neural stem cells (NSCs) of the subventricular zone that acquire genetic alterations. In the adult brain, NSCs are largely quiescent, suggesting that deregulation of quiescence maintenance may be a prerequisite for tumor initiation. Although inactivation of the tumor suppressor p53 is a frequent event in gliomagenesis, whether or how it affects quiescent NSCs (qNSCs) remains unclear. Here, we show that p53 maintains quiescence by inducing fatty-acid oxidation (FAO) and that acute p53 deletion in qNSCs results in their premature activation to a proliferative state. Mechanistically, this occurs through direct transcriptional induction of PPARGC1a, which in turn activates PPARα to upregulate FAO genes. Dietary supplementation with fish oil containing omega-3 fatty acids, natural PPARα ligands, fully restores quiescence of p53-deficient NSCs and delays tumor initiation in a glioblastoma mouse model. Thus, diet can silence glioblastoma driver mutations, with important implications for cancer prevention.


Subject(s)
Glioblastoma , Neural Stem Cells , Mice , Animals , Tumor Suppressor Protein p53 , PPAR alpha , Diet , Mutation
4.
Curr Biol ; 33(6): 1082-1098.e8, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36841240

ABSTRACT

Despite their latent neurogenic potential, most normal parenchymal astrocytes fail to dedifferentiate to neural stem cells in response to injury. In contrast, aberrant lineage plasticity is a hallmark of gliomas, and this suggests that tumor suppressors may constrain astrocyte dedifferentiation. Here, we show that p53, one of the most commonly inactivated tumor suppressors in glioma, is a gatekeeper of astrocyte fate. In the context of stab-wound injury, p53 loss destabilized the identity of astrocytes, priming them to dedifferentiate in later life. This resulted from persistent and age-exacerbated neuroinflammation at the injury site and EGFR activation in periwound astrocytes. Mechanistically, dedifferentiation was driven by the synergistic upregulation of mTOR signaling downstream of p53 loss and EGFR, which reinstates stemness programs via increased translation of neurodevelopmental transcription factors. Thus, our findings suggest that first-hit mutations remove the barriers to injury-induced dedifferentiation by sensitizing somatic cells to inflammatory signals, with implications for tumorigenesis.


Subject(s)
Astrocytes , Neural Stem Cells , Astrocytes/pathology , Tumor Suppressor Protein p53/genetics , ErbB Receptors/genetics , Mutation
5.
Trends Neurosci ; 45(11): 865-876, 2022 11.
Article in English | MEDLINE | ID: mdl-36089406

ABSTRACT

Glioblastoma is the most common and aggressive primary brain cancer in adults and is almost universally fatal due to its stark therapeutic resistance. During the past decade, although survival has not substantially improved, major advances have been made in our understanding of the underlying biology. It has become clear that these devastating tumors recapitulate features of neurodevelopmental hierarchies which are influenced by the microenvironment. Emerging evidence also highlights a prominent role for injury responses in steering cellular phenotypes and contributing to tumor heterogeneity. This review highlights how the interplay between injury and neurodevelopmental programs impacts on tumor growth, invasion, and treatment resistance, and discusses potential therapeutic considerations in view of these findings.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/pathology , Tumor Microenvironment/physiology
7.
Nat Commun ; 12(1): 2594, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33972529

ABSTRACT

Adult neural stem cells (NSCs) must tightly regulate quiescence and proliferation. Single-cell analysis has suggested a continuum of cell states as NSCs exit quiescence. Here we capture and characterize in vitro primed quiescent NSCs and identify LRIG1 as an important regulator. We show that BMP-4 signaling induces a dormant non-cycling quiescent state (d-qNSCs), whereas combined BMP-4/FGF-2 signaling induces a distinct primed quiescent state poised for cell cycle re-entry. Primed quiescent NSCs (p-qNSCs) are defined by high levels of LRIG1 and CD9, as well as an interferon response signature, and can efficiently engraft into the adult subventricular zone (SVZ) niche. Genetic disruption of Lrig1 in vivo within the SVZ NSCs leads an enhanced proliferation. Mechanistically, LRIG1 primes quiescent NSCs for cell cycle re-entry and EGFR responsiveness by enabling EGFR protein levels to increase but limiting signaling activation. LRIG1 is therefore an important functional regulator of NSC exit from quiescence.


Subject(s)
Adult Stem Cells/metabolism , Lateral Ventricles/metabolism , MAP Kinase Signaling System/genetics , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism , Neural Stem Cells/metabolism , Neurogenesis/genetics , Adult Stem Cells/cytology , Adult Stem Cells/drug effects , Animals , Bone Morphogenetic Protein 4/pharmacology , Cell Cycle/genetics , Cell Cycle Proteins/metabolism , Cell Proliferation/genetics , DNA-Binding Proteins/metabolism , ErbB Receptors/pharmacology , Fibroblast Growth Factor 2/pharmacology , Gene Ontology , Immunohistochemistry , Interferons/pharmacology , Lateral Ventricles/cytology , MAP Kinase Signaling System/drug effects , Membrane Glycoproteins/genetics , Mice , Nerve Tissue Proteins/genetics , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Proteomics , RNA-Seq , Regeneration/drug effects , Tetraspanin 29/metabolism , Up-Regulation
8.
Nat Commun ; 12(1): 2184, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33846316

ABSTRACT

Glioblastomas are hierarchically organised tumours driven by glioma stem cells that retain partial differentiation potential. Glioma stem cells are maintained in specialised microenvironments, but whether, or how, they undergo lineage progression outside of these niches remains unclear. Here we identify the white matter as a differentiative niche for glioblastomas with oligodendrocyte lineage competency. Tumour cells in contact with white matter acquire pre-oligodendrocyte fate, resulting in decreased proliferation and invasion. Differentiation is a response to white matter injury, which is caused by tumour infiltration itself in a tumoursuppressive feedback loop. Mechanistically, tumour cell differentiation is driven by selective white matter upregulation of SOX10, a master regulator of normal oligodendrogenesis. SOX10 overexpression or treatment with myelination-promoting agents that upregulate endogenous SOX10, mimic this response, leading to niche-independent pre-oligodendrocyte differentiation and tumour suppression in vivo. Thus, glioblastoma recapitulates an injury response and exploiting this latent programme may offer treatment opportunities for a subset of patients.


Subject(s)
Brain Neoplasms/pathology , Cell Differentiation , Glioblastoma/pathology , White Matter/pathology , Animals , Brain Neoplasms/ultrastructure , Cell Lineage , Cell Proliferation , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Glioblastoma/ultrastructure , Mice, Inbred NOD , Mice, SCID , Myelin Sheath/metabolism , Oligodendroglia/pathology , SOXE Transcription Factors/metabolism , Transcriptome/genetics , Up-Regulation/genetics
9.
Neuron ; 96(1): 98-114.e7, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28957681

ABSTRACT

Schwann cell dedifferentiation from a myelinating to a progenitor-like cell underlies the remarkable ability of peripheral nerves to regenerate following injury. However, the molecular identity of the differentiated and dedifferentiated states in vivo has been elusive. Here, we profiled Schwann cells acutely purified from intact nerves and from the wound and distal regions of severed nerves. Our analysis reveals novel facets of the dedifferentiation response, including acquisition of mesenchymal traits and a Myc module. Furthermore, wound and distal dedifferentiated Schwann cells constitute different populations, with wound cells displaying increased mesenchymal character induced by localized TGFß signaling. TGFß promotes invasion and crosstalks with Eph signaling via N-cadherin to drive collective migration of the Schwann cells across the wound. Consistently, Tgfbr2 deletion in Schwann cells resulted in misdirected and delayed reinnervation. Thus, the wound microenvironment is a key determinant of Schwann cell identity, and it promotes nerve repair through integration of multiple concerted signals. VIDEO ABSTRACT.


Subject(s)
Cell Differentiation , Cellular Microenvironment/physiology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Nerve Regeneration/physiology , Peripheral Nerve Injuries/physiopathology , Schwann Cells/cytology , Schwann Cells/physiology , Animals , Cadherins/physiology , Cell Movement/physiology , Cells, Cultured , Female , Male , Mice , Mice, Transgenic , Peripheral Nerve Injuries/pathology , Primary Cell Culture , Rats , Rats, Transgenic , Receptors, Eph Family/physiology , Sciatic Nerve/injuries , Sciatic Nerve/physiology , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/physiology
10.
Elife ; 52016 06 28.
Article in English | MEDLINE | ID: mdl-27350048

ABSTRACT

Glioblastomas (GBM) are aggressive and therapy-resistant brain tumours, which contain a subpopulation of tumour-propagating glioblastoma stem-like cells (GSC) thought to drive progression and recurrence. Diffuse invasion of the brain parenchyma, including along preexisting blood vessels, is a leading cause of therapeutic resistance, but the mechanisms remain unclear. Here, we show that ephrin-B2 mediates GSC perivascular invasion. Intravital imaging, coupled with mechanistic studies in murine GBM models and patient-derived GSC, revealed that endothelial ephrin-B2 compartmentalises non-tumourigenic cells. In contrast, upregulation of the same ephrin-B2 ligand in GSC enabled perivascular migration through homotypic forward signalling. Surprisingly, ephrin-B2 reverse signalling also promoted tumourigenesis cell-autonomously, by mediating anchorage-independent cytokinesis via RhoA. In human GSC-derived orthotopic xenografts, EFNB2 knock-down blocked tumour initiation and treatment of established tumours with ephrin-B2-blocking antibodies suppressed progression. Thus, our results indicate that targeting ephrin-B2 may be an effective strategy for the simultaneous inhibition of invasion and proliferation in GBM.


Subject(s)
Cell Movement , Cell Proliferation , Ephrin-B2/metabolism , Glioblastoma/pathology , Neoplastic Stem Cells/physiology , Animals , Heterografts , Humans , Intravital Microscopy , Mice
11.
Nat Cell Biol ; 16(11): 1045-56, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25283993

ABSTRACT

The vasculature is a prominent component of the subventricular zone neural stem cell niche. Although quiescent neural stem cells physically contact blood vessels at specialized endfeet, the significance of this interaction is not understood. In contrast, it is well established that vasculature-secreted soluble factors promote lineage progression of committed progenitors. Here we specifically investigated the role of cell-cell contact-dependent signalling in the vascular niche. Unexpectedly, we find that direct cell-cell interactions with endothelial cells enforce quiescence and promote stem cell identity. Mechanistically, endothelial ephrinB2 and Jagged1 mediate these effects by suppressing cell-cycle entry downstream of mitogens and inducing stemness genes to jointly inhibit differentiation. In vivo, endothelial-specific ablation of either of the genes which encode these proteins, Efnb2 and Jag1 respectively, aberrantly activates quiescent stem cells, resulting in depletion. Thus, we identify the vasculature as a critical niche compartment for stem cell maintenance, furthering our understanding of how anchorage to the niche maintains stem cells within a pro-differentiative microenvironment.


Subject(s)
Calcium-Binding Proteins/metabolism , Cell Communication/physiology , Cell Differentiation/physiology , Ephrin-B2/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Neural Stem Cells/cytology , Stem Cell Niche/physiology , Animals , Cell Cycle/physiology , Cell Division/physiology , Endothelial Cells/cytology , Humans , Jagged-1 Protein , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Neurons/cytology , Serrate-Jagged Proteins , Stem Cell Niche/genetics
12.
Dev Biol ; 361(1): 90-102, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22027433

ABSTRACT

The extraembryonic endoderm of mammals is essential for nutritive support of the fetus and patterning of the early embryo. Visceral and parietal endoderm are major subtypes of this lineage with the former exhibiting most, if not all, of the embryonic patterning properties. Extraembryonic endoderm (XEN) cell lines derived from the primitive endoderm of mouse blastocysts represent a cell culture model of this lineage, but are biased towards parietal endoderm in culture and in chimeras. In an effort to promote XEN cells to adopt visceral endoderm character we have mimicked different aspects of the in vivo environment. We found that BMP signaling promoted a mesenchymal-to-epithelial transition of XEN cells with up-regulation of E-cadherin and down-regulation of vimentin. Gene expression analysis showed the differentiated XEN cells most resembled extraembryonic visceral endoderm (exVE), a subtype of VE covering the extraembryonic ectoderm in the early embryo, and during gastrulation it combines with extraembryonic mesoderm to form the definitive yolk sac. We found that laminin, a major component of the extracellular matrix in the early embryo, synergised with BMP to promote highly efficient conversion of XEN cells to exVE. Inhibition of BMP signaling with the chemical inhibitor, Dorsomorphin, prevented this conversion suggesting that Smad1/5/8 activity is critical for exVE induction of XEN cells. Finally, we show that applying our new culture conditions to freshly isolated parietal endoderm (PE) from Reichert's membrane promoted VE differentiation showing that the PE is developmentally plastic and can be reprogrammed to a VE state in response to BMP. Generation of visceral endoderm from XEN cells uncovers the true potential of these blastocyst-derived cells and is a significant step towards modelling early developmental events ex vivo.


Subject(s)
Bone Morphogenetic Protein 4/metabolism , Cell Differentiation/physiology , Endoderm/cytology , Extracellular Matrix/metabolism , Gene Expression Regulation, Developmental/physiology , Signal Transduction/physiology , Animals , Cadherins/metabolism , Cell Culture Techniques , Cell Differentiation/genetics , Cell Line , Endoderm/metabolism , Epithelial Cells/cytology , Flow Cytometry , Fluorescent Antibody Technique , Gene Expression Regulation, Developmental/genetics , Laminin/metabolism , Mesoderm/cytology , Mice , Microarray Analysis , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Vimentin/metabolism
13.
Curr Biol ; 21(15): 1289-95, 2011 Aug 09.
Article in English | MEDLINE | ID: mdl-21802298

ABSTRACT

Nodal/activin signaling plays a key role in anterior-posterior (A-P) axis formation by inducing the anterior visceral endoderm (AVE), the extraembryonic signaling center that initiates anterior patterning in the embryo. Here we provide direct evidence that the mitogen-activated protein kinase (MAPK) p38 regulates AVE specification through a crosstalk with the Nodal/activin signaling pathway. We show that p38 activation is directly stimulated by Nodal/activin and fails to be maintained upon inhibition of this pathway both in vivo and in vitro. In turn, p38 strengthens the Nodal signaling response by phosphorylating the Smad2 linker region and enhancing the level of Smad2 activation. Furthermore, we demonstrate that this p38 amplification loop is essential for correct specification of the AVE in two ways: first, by showing that inhibiting p38 activity in 5.5 days postcoitum embryo cultures leads to a switch from AVE to an extraembryonic visceral endoderm cell identity, and second, by demonstrating that genetically reducing p38 activity in a Nodal-sensitive background leads to a failure of AVE specification in vivo. Collectively, our results reveal a novel role for p38 in regulating the threshold of Nodal signaling and propose a new mechanism by which A-P axis development can be reinforced during early embryogenesis.


Subject(s)
Activins/metabolism , Body Patterning , Nodal Protein/metabolism , Signal Transduction , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Mutation , Phosphorylation , p38 Mitogen-Activated Protein Kinases/genetics
14.
PLoS Biol ; 9(2): e1001019, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21364967

ABSTRACT

The anterior visceral endoderm (AVE), a signalling centre within the simple epithelium of the visceral endoderm (VE), is required for anterior-posterior axis specification in the mouse embryo. AVE cells migrate directionally within the VE, thereby properly positioning the future anterior of the embryo and orientating the primary body axis. AVE cells consistently come to an abrupt stop at the border between the anterior epiblast and extra-embryonic ectoderm, which represents an end-point to their proximal migration. Little is known about the underlying basis for this barrier and how surrounding cells in the VE respond to or influence AVE migration. We use high-resolution 3D reconstructions of protein localisation patterns and time-lapse microscopy to show that AVE cells move by exchanging neighbours within an intact epithelium. Cell movement and mixing is restricted to the VE overlying the epiblast, characterised by the enrichment of Dishevelled-2 (Dvl2) to the lateral plasma membrane, a hallmark of Planar Cell Polarity (PCP) signalling. AVE cells halt upon reaching the adjoining region of VE overlying the extra-embryonic ectoderm, which displays reduced neighbour exchange and in which Dvl2 is excluded specifically from the plasma membrane. Though a single continuous sheet, these two regions of VE show distinct patterns of F-actin localisation, in cortical rings and an apical shroud, respectively. We genetically perturb PCP signalling and show that this disrupts the localisation pattern of Dvl2 and F-actin and the normal migration of AVE cells. In Nodal null embryos, membrane localisation of Dvl2 is reduced, while in mutants for the Nodal inhibitor Lefty1, Dvl2 is ectopically membrane localised, establishing a role for Nodal in modulating PCP signalling. These results show that the limits of AVE migration are determined by regional differences in cell behaviour and protein localisation within an otherwise apparently uniform VE. In addition to coordinating global cell movements across epithelia (such as during convergence extension), PCP signalling in interplay with TGFß signalling can demarcate regions of differing behaviour within epithelia, thereby modulating the movement of cells within them.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Endoderm/cytology , Endoderm/metabolism , Nodal Protein/metabolism , Phosphoproteins/metabolism , Viscera/cytology , Actins/metabolism , Animals , Cadherins/metabolism , Cell Movement , Cell Polarity , Cell Shape , Dishevelled Proteins , Embryo, Mammalian/metabolism , Embryo, Mammalian/pathology , Epithelium/metabolism , Left-Right Determination Factors/metabolism , Membrane Proteins/metabolism , Mice , Models, Biological , Nonmuscle Myosin Type IIA/metabolism , Protein Transport , Signal Transduction , Viscera/embryology , Zonula Occludens-1 Protein
15.
Development ; 138(8): 1521-30, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21427142

ABSTRACT

During development, the growth of the embryo must be coupled to its patterning to ensure correct and timely morphogenesis. In the mouse embryo, migration of the anterior visceral endoderm (AVE) to the prospective anterior establishes the anterior-posterior (A-P) axis. By analysing the distribution of cells in S phase, M phase and G2 from the time just prior to the migration of the AVE until 18 hours after its movement, we show that there is no evidence for differential proliferation along the A-P axis of the mouse embryo. Rather, we have identified that as AVE movements are being initiated, the epiblast proliferates at a much higher rate than the visceral endoderm. We show that these high levels of proliferation in the epiblast are dependent on Nodal signalling and are required for A-P establishment, as blocking cell division in the epiblast inhibits AVE migration. Interestingly, inhibition of migration by blocking proliferation can be rescued by Dkk1. This suggests that the high levels of epiblast proliferation function to move the prospective AVE away from signals that are inhibitory to its migration. The finding that initiation of AVE movements requires a certain level of proliferation in the epiblast provides a mechanism whereby A-P axis development is coordinated with embryonic growth.


Subject(s)
Embryo, Mammalian/cytology , Endoderm/cytology , Viscera/embryology , Animals , Cell Cycle/physiology , Cell Movement/physiology , Cell Proliferation , Embryo, Mammalian/metabolism , Endoderm/metabolism , Gene Expression Regulation, Developmental , Immunohistochemistry , In Situ Hybridization , Mice
16.
PLoS One ; 6(3): e17620, 2011 Mar 18.
Article in English | MEDLINE | ID: mdl-21445260

ABSTRACT

Anterior-posterior axis specification in the mouse requires signalling from a specialised extra-embryonic tissue called the anterior visceral endoderm (AVE). AVE precursors are induced at the distal tip of the embryo and move to the prospective anterior. Embryological and genetic analysis has demonstrated that the AVE is required for anterior patterning and for correctly positioning the site of primitive streak formation by inhibiting Nodal activity. We have carried out a genetic ablation of the Hex-expressing cells of the AVE (Hex-AVE) by knocking the Diphtheria toxin subunit A into the Hex locus in an inducible manner. Using this model we have identified that, in addition to its requirement in the anterior of the embryo, the Hex-AVE sub-population has a novel role between 5.5 and 6.5dpc in patterning the primitive streak. Embryos lacking the Hex-AVE display delayed initiation of primitive streak formation and miss-patterning of the anterior primitive streak. We demonstrate that in the absence of the Hex-AVE the restriction of Bmp2 expression to the proximal visceral endoderm is also defective and expression of Wnt3 and Nodal is not correctly restricted to the posterior epiblast. These results, coupled with the observation that reducing Nodal signalling in Hex-AVE ablated embryos increases the frequency of phenotypes observed, suggests that these primitive streak patterning defects are due to defective Nodal signalling. Together, our experiments demonstrate that the AVE is not only required for anterior patterning, but also that specific sub-populations of this tissue are required to pattern the posterior of the embryo.


Subject(s)
Body Patterning , Endoderm/embryology , Viscera/embryology , Animals , Base Sequence , DNA Primers , Genetic Markers , Homeodomain Proteins/genetics , Mice , Nodal Protein/genetics , Transcription Factors/genetics
17.
Biochem J ; 434(1): 49-60, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21118154

ABSTRACT

LKB1 is a 'master' protein kinase implicated in the regulation of metabolism, cell proliferation, cell polarity and tumorigenesis. However, the long-term role of LKB1 in hepatic function is unknown. In the present study, it is shown that hepatic LKB1 plays a key role in liver cellular architecture and metabolism. We report that liver-specific deletion of LKB1 in mice leads to defective canaliculi and bile duct formation, causing impaired bile acid clearance and subsequent accumulation of bile acids in serum and liver. Concomitant with this, it was found that the majority of BSEP (bile salt export pump) was retained in intracellular pools rather than localized to the canalicular membrane in hepatocytes from LLKB1KO (liver-specific Lkb1-knockout) mice. Together, these changes resulted in toxic accumulation of bile salts, reduced liver function and failure to thrive. Additionally, circulating LDL (low-density lipoprotein)-cholesterol and non-esterified cholesterol levels were increased in LLKB1KO mice with an associated alteration in red blood cell morphology and development of hyperbilirubinaemia. These results indicate that LKB1 plays a critical role in bile acid homoeostasis and that lack of LKB1 in the liver results in cholestasis. These findings indicate a novel key role for LKB1 in the development of hepatic morphology and membrane targeting of canalicular proteins.


Subject(s)
Bile Acids and Salts/metabolism , Bile Canaliculi/pathology , Bile Canaliculi/physiology , Liver/anatomy & histology , Liver/physiology , Protein Serine-Threonine Kinases/metabolism , AMP-Activated Protein Kinases , Aging , Animals , Biological Transport/physiology , Cell Membrane , Cholesterol/metabolism , Mice , Mice, Knockout , Protein Serine-Threonine Kinases/genetics
18.
Cell Metab ; 10(5): 343-54, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19883613

ABSTRACT

PI3K signaling is thought to mediate leptin and insulin action in hypothalamic pro-opiomelanocortin (POMC) and agouti-related protein (AgRP) neurons, key regulators of energy homeostasis, through largely unknown mechanisms. We inactivated either p110alpha or p110beta PI3K catalytic subunits in these neurons and demonstrate a dominant role for the latter in energy homeostasis regulation. In POMC neurons, p110beta inactivation prevented insulin- and leptin-stimulated electrophysiological responses. POMCp110beta null mice exhibited central leptin resistance, increased adiposity, and diet-induced obesity. In contrast, the response to leptin was not blocked in p110alpha-deficient POMC neurons. Accordingly, POMCp110alpha null mice displayed minimal energy homeostasis abnormalities. Similarly, in AgRP neurons, p110beta had a more important role than p110alpha. AgRPp110alpha null mice displayed normal energy homeostasis regulation, whereas AgRPp110beta null mice were lean, with increased leptin sensitivity and resistance to diet-induced obesity. These results demonstrate distinct metabolic roles for the p110alpha and p110beta isoforms of PI3K in hypothalamic energy regulation.


Subject(s)
Agouti-Related Protein/metabolism , Energy Metabolism/physiology , Isoenzymes/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Pro-Opiomelanocortin/metabolism , Adiposity/genetics , Animals , Class I Phosphatidylinositol 3-Kinases , Diet , Electrophysiological Phenomena , Hypothalamus/metabolism , Insulin/metabolism , Isoenzymes/antagonists & inhibitors , Isoenzymes/genetics , Leptin/metabolism , Mice , Mice, Knockout , Neuroendocrine Cells/enzymology , Obesity/genetics , Obesity/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphoinositide-3 Kinase Inhibitors , Signal Transduction
19.
J Clin Invest ; 119(1): 125-35, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19065050

ABSTRACT

Defective insulin secretion in response to glucose is an important component of the beta cell dysfunction seen in type 2 diabetes. As mitochondrial oxidative phosphorylation plays a key role in glucose-stimulated insulin secretion (GSIS), oxygen-sensing pathways may modulate insulin release. The von Hippel-Lindau (VHL) protein controls the degradation of hypoxia-inducible factor (HIF) to coordinate cellular and organismal responses to altered oxygenation. To determine the role of this pathway in controlling glucose-stimulated insulin release from pancreatic beta cells, we generated mice lacking Vhl in pancreatic beta cells (betaVhlKO mice) and mice lacking Vhl in the pancreas (PVhlKO mice). Both mouse strains developed glucose intolerance with impaired insulin secretion. Furthermore, deletion of Vhl in beta cells or the pancreas altered expression of genes involved in beta cell function, including those involved in glucose transport and glycolysis, and isolated betaVhlKO and PVhlKO islets displayed impaired glucose uptake and defective glucose metabolism. The abnormal glucose homeostasis was dependent on upregulation of Hif-1alpha expression, and deletion of Hif1a in Vhl-deficient beta cells restored GSIS. Consistent with this, expression of activated Hif-1alpha in a mouse beta cell line impaired GSIS. These data suggest that VHL/HIF oxygen-sensing mechanisms play a critical role in glucose homeostasis and that activation of this pathway in response to decreased islet oxygenation may contribute to beta cell dysfunction.


Subject(s)
Glucose/metabolism , Homeostasis , Insulin-Secreting Cells/metabolism , Von Hippel-Lindau Tumor Suppressor Protein , Animals , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 2/metabolism , Insulin/metabolism , Insulin-Secreting Cells/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxygen/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism
20.
FASEB J ; 22(3): 807-18, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17928362

ABSTRACT

Recent evidence suggests that alterations in insulin/insulin-like growth factor 1 (IGF1) signaling (IIS) can increase mammalian life span. For example, in several mouse mutants, impairment of the growth hormone (GH)/IGF1 axis increases life span and also insulin sensitivity. However, the intracellular signaling route to altered mammalian aging remains unclear. We therefore measured the life span of mice lacking either insulin receptor substrate (IRS) 1 or 2, the major intracellular effectors of the IIS receptors. Our provisional results indicate that female Irs1-/- mice are long-lived. Furthermore, they displayed resistance to a range of age-sensitive markers of aging including skin, bone, immune, and motor dysfunction. These improvements in health were seen despite mild, lifelong insulin resistance. Thus, enhanced insulin sensitivity is not a prerequisite for IIS mutant longevity. Irs1-/- female mice also displayed normal anterior pituitary function, distinguishing them from long-lived somatotrophic axis mutants. In contrast, Irs2-/- mice were short-lived, whereas Irs1+/- and Irs2+/- mice of both sexes showed normal life spans. Our results therefore suggest that IRS1 signaling is an evolutionarily conserved pathway regulating mammalian life span and may be a point of intervention for therapies with the potential to delay age-related processes.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Longevity/genetics , Animals , Biomarkers/analysis , Female , Insulin Receptor Substrate Proteins , Insulin Resistance/genetics , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Knockout , Phosphoproteins/genetics , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...