Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(17): e2118696119, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35452307

ABSTRACT

Sedimentological records provide the only accessible archive for unraveling Earth's orbital variations in the remote geological past. These variations modulate Earth's climate system and provide essential constraints on gravitational parameters used in solar system modeling. However, geologic documentation of midlatitude response to orbital climate forcing remains poorly resolved compared to that of the low-latitude tropics, especially before 50 Mya, the limit of reliable extrapolation from the present. Here, we compare the climate response to orbital variations in a Late Triassic midlatitude temperate setting in Jameson Land, East Greenland (∼43°N paleolatitude) and the tropical low paleolatitude setting of the Newark Basin, with independent time horizons provided by common magnetostratigraphic boundaries whose timing has been corroborated by uranium-lead (U-Pb) zircon dating in correlative strata on the Colorado Plateau. An integrated cyclostratigraphic and magnetostratigraphic age model revealed long-term climate cycles with periods of 850,000 and 1,700,000 y ascribed to the Mars­Earth grand orbital cycles. This indicates a 2:1 resonance between modulation of orbital obliquity and eccentricity variations more than 200 Mya and whose periodicities are inconsistent with astronomical solutions and indicate chaotic diffusion of the solar system. Our findings also demonstrate antiphasing in climate response between low and midlatitudes that has implications for precise global correlation of geological records.


Subject(s)
Climate , Planets , Earth, Planet , Evolution, Planetary , Geology , Greenland
2.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Article in English | MEDLINE | ID: mdl-33593914

ABSTRACT

The earliest dinosaurs (theropods and sauropodomorphs) are found in fossiliferous early Late Triassic strata dated to about 230 million years ago (Ma), mainly in northwestern Argentina and southern Brazil in the Southern Hemisphere temperate belt of what was Gondwana in Pangea. Sauropodomorphs, which are not known for the entire Triassic in then tropical North America, eventually appear 15 million years later in the Northern Hemisphere temperate belt of Laurasia. The Pangea supercontinent was traversable in principle by terrestrial vertebrates, so the main barrier to be surmounted for dispersal between hemispheres was likely to be climatic; in particular, the intense aridity of tropical desert belts and unstable climate in the equatorial humid belt accompanying high atmospheric pCO2 that characterized the Late Triassic. We revisited the chronostratigraphy of the dinosaur-bearing Fleming Fjord Group of central East Greenland and, with additional data, produced a correlation of a detailed magnetostratigraphy from more than 325 m of composite section from two field areas to the age-calibrated astrochronostratigraphic polarity time scale. This age model places the earliest occurrence of sauropodomorphs (Plateosaurus) in their northernmost range to ∼214 Ma. The timing is within the 215 to 212 Ma (mid-Norian) window of a major, robust dip in atmospheric pCO2 of uncertain origin but which may have resulted in sufficiently lowered climate barriers that facilitated the initial major dispersal of the herbivorous sauropodomorphs to the temperate belt of the Northern Hemisphere. Indications are that carnivorous theropods may have had dispersals that were less subject to the same climate constraints.


Subject(s)
Biological Evolution , Dinosaurs/physiology , Fossils , Magnetics , Paleontology , Africa , Animals , Antarctic Regions , Australia , Brazil , Chronology as Topic , Greenland , Phylogeny
3.
Sci Rep ; 10(1): 13529, 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32764542

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Sci Rep ; 8(1): 12778, 2018 08 24.
Article in English | MEDLINE | ID: mdl-30143649

ABSTRACT

The forcing mechanisms responsible for centennial to millennial variability of mid-latitude storminess are still poorly understood. On decadal scales, the present-day geographic variability of North-Atlantic storminess responds to latitudinal shifts of the North-Atlantic westerly wind-belt under the prime control of the North-Atlantic Oscillation (NAO). An equivalent mechanism operating at centennial to millennial time scales during the Holocene is still to be ascertained, especially owing to the lack of high-resolution and continuous records of past-storminess extending far enough in time. Here we present a reconstruction of past storminess activity based on a high-resolution record of wind-blown sand retrieved from a near-coastal wetland. Our record extends back to ca. 10,000 B.P. and allows to continuously document fluctuations in the frequency of Holocene storm-force winds at our study-site at a mean high temporal resolution of 40 years. Large similarities between our record and palaeo-oceanographic records of Holocene climate changes in the North-Atlantic suggest that our past-storminess record reproduces a signal of significance for the North-Eastern Atlantic realm. We find that Holocene North-Atlantic storminess is dominated by robust millennial (≈2,500-year) to centennial (≈400 and 200-year) periodicities. These changes in storminess were accompanied by changes in the precipitation regimes over northern Europe, evidencing large-scale shifts in the latitudinal positions of the Atlantic westerlies akin to present-day NAO patterns. We propose that these shifts originate from changes in the position and extent of the Azores high-pressure system and Polar vortex, as supported by climate model simulations. Finally, we demonstrate that enhanced zonal storminess activity over the North-Atlantic was the driver of centennial-scale changes in North-Atlantic oceanic circulation, while ocean dynamics most likely influenced back the atmospheric circulation at millennial time-scales. This may vouch for the instrumental role played by North-Atlantic storminess in triggering abrupt climate change at centennial scales during the Holocene.

5.
Sci Rep ; 7: 46460, 2017 04 19.
Article in English | MEDLINE | ID: mdl-28422184

ABSTRACT

Identification of sea-level proxies is important for reconstruction of past sea-level variation. Methods for reconstructing Holocene relative sea-level curves are crucial for quantification of the impact of Greenland ice thickness variation on global sea level and vertical land movement. Arctic beach ridges constitute important potential archives of sea-level variation. However, their surface morphology may have undergone modification since deposition due to freezing/thawing processes and erosion, and their morphology may therefore not be trustworthy for sea-level reconstruction. Therefore, geophysical imaging is used to examine the internal structures of the beach ridges and to define a sea-level proxy unaffected by surface processes. The GPR reflections from study sites in West and South Greenland show deposition of beachface deposits and upper shoreface deposits; the contact between steeply dipping beachface reflections and less-dipping shoreface reflections is used as sea-level proxy. Numerous points are identified along GPR transects facilitating reconstruction of relative sea-level variation of hitherto unprecedented resolution. Erosional events and deformation caused by freezing/thawing processes are clearly delineated. The approach constitutes a solid base for reconstruction of relative sea-level curves affected by a well-defined vertical land movement history since the studied beach ridge systems represent long time intervals and only relatively small spatial extents.

SELECTION OF CITATIONS
SEARCH DETAIL
...