Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 12(12): e1002030, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25549104

ABSTRACT

We have developed and tested two linked but separable structured inquiry exercises using a set of Drosophila melanogaster GAL4 enhancer trap strains for an upper-level undergraduate laboratory methods course at Bucknell University. In the first, students learn to perform inverse PCR to identify the genomic location of the GAL4 insertion, using FlyBase to identify flanking sequences and the primary literature to synthesize current knowledge regarding the nearest gene. In the second, we cross each GAL4 strain to a UAS-CD8-GFP reporter strain, and students perform whole mount CNS dissection, immunohistochemistry, confocal imaging, and analysis of developmental expression patterns. We have found these exercises to be very effective in teaching the uses and limitations of PCR and antibody-based techniques as well as critical reading of the primary literature and scientific writing. Students appreciate the opportunity to apply what they learn by generating novel data of use to the wider research community.


Subject(s)
Curriculum , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Enhancer Elements, Genetic , Laboratories , Learning , Transcription Factors/genetics , Universities , Animals , Base Sequence , Brain/metabolism , Gene Expression Regulation , Genes, Insect , Molecular Sequence Data , Mushroom Bodies/metabolism , Polymerase Chain Reaction
2.
Neural Dev ; 7: 31, 2012 Sep 11.
Article in English | MEDLINE | ID: mdl-22967828

ABSTRACT

BACKGROUND: In holometabolous insects such as Drosophila melanogaster, neuroblasts produce an initial population of diverse neurons during embryogenesis and a much larger set of adult-specific neurons during larval life. In the ventral CNS, many of these secondary neuronal lineages differ significantly from one body segment to another, suggesting a role for anteroposterior patterning genes. RESULTS: Here we systematically characterize the expression pattern and function of the Hox gene Ultrabithorax (Ubx) in all 25 postembryonic lineages. We find that Ubx is expressed in a segment-, lineage-, and hemilineage-specific manner in the thoracic and anterior abdominal segments. When Ubx is removed from neuroblasts via mitotic recombination, neurons in these segments exhibit the morphologies and survival patterns of their anterior thoracic counterparts. Conversely, when Ubx is ectopically expressed in anterior thoracic segments, neurons exhibit complementary posterior transformation phenotypes. CONCLUSION: Our findings demonstrate that Ubx plays a critical role in conferring segment-appropriate morphology and survival on individual neurons in the adult-specific ventral CNS. Moreover, while always conferring spatial identity in some sense, Ubx has been co-opted during evolution for distinct and even opposite functions in different neuronal hemilineages.


Subject(s)
Drosophila Proteins/metabolism , Gene Expression Regulation, Developmental/physiology , Homeodomain Proteins/metabolism , Nervous System/growth & development , Nervous System/metabolism , Transcription Factors/metabolism , Animals , Animals, Genetically Modified , Cell Death/genetics , Drosophila , Drosophila Proteins/genetics , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Gene Expression Regulation, Developmental/genetics , Homeodomain Proteins/genetics , Larva , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...