Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Plant ; 14(7): 1185-1198, 2021 07 05.
Article in English | MEDLINE | ID: mdl-33964458

ABSTRACT

Fruit set is inhibited by adverse temperatures, with consequences on yield. We isolated a tomato mutant producing fruits under non-permissive hot temperatures and identified the causal gene as SlHB15A, belonging to class III homeodomain leucine-zipper transcription factors. SlHB15A loss-of-function mutants display aberrant ovule development that mimics transcriptional changes occurring in fertilized ovules and leads to parthenocarpic fruit set under optimal and non-permissive temperatures, in field and greenhouse conditions. Under cold growing conditions, SlHB15A is subjected to conditional haploinsufficiency and recessive dosage sensitivity controlled by microRNA 166 (miR166). Knockdown of SlHB15A alleles by miR166 leads to a continuum of aberrant ovules correlating with parthenocarpic fruit set. Consistent with this, plants harboring an Slhb15a-miRNA166-resistant allele developed normal ovules and were unable to set parthenocarpic fruit under cold conditions. DNA affinity purification sequencing and RNA-sequencing analyses revealed that SlHB15A is a bifunctional transcription factor expressed in the ovule integument. SlHB15A binds to the promoters of auxin-related genes to repress auxin signaling and to the promoters of ethylene-related genes to activate their expression. A survey of tomato genetic biodiversity identified pat and pat-1, two historical parthenocarpic mutants, as alleles of SlHB15A. Taken together, our findings demonstrate the role of SlHB15A as a sentinel to prevent fruit set in the absence of fertilization and provide a mean to enhance fruiting under extreme temperatures.


Subject(s)
MicroRNAs/physiology , Plant Proteins/physiology , RNA, Plant/physiology , Solanum lycopersicum/growth & development , Transcription Factors/physiology , Gene Expression Profiling , Leucine Zippers , Solanum lycopersicum/genetics , Parthenogenesis/genetics , Plant Proteins/genetics
2.
BMC Genomics ; 12: 252, 2011 May 20.
Article in English | MEDLINE | ID: mdl-21599934

ABSTRACT

BACKGROUND: Melon (Cucumis melo), an economically important vegetable crop, belongs to the Cucurbitaceae family which includes several other important crops such as watermelon, cucumber, and pumpkin. It has served as a model system for sex determination and vascular biology studies. However, genomic resources currently available for melon are limited. RESULT: We constructed eleven full-length enriched and four standard cDNA libraries from fruits, flowers, leaves, roots, cotyledons, and calluses of four different melon genotypes, and generated 71,577 and 22,179 ESTs from full-length enriched and standard cDNA libraries, respectively. These ESTs, together with ~35,000 ESTs available in public domains, were assembled into 24,444 unigenes, which were extensively annotated by comparing their sequences to different protein and functional domain databases, assigning them Gene Ontology (GO) terms, and mapping them onto metabolic pathways. Comparative analysis of melon unigenes and other plant genomes revealed that 75% to 85% of melon unigenes had homologs in other dicot plants, while approximately 70% had homologs in monocot plants. The analysis also identified 6,972 gene families that were conserved across dicot and monocot plants, and 181, 1,192, and 220 gene families specific to fleshy fruit-bearing plants, the Cucurbitaceae family, and melon, respectively. Digital expression analysis identified a total of 175 tissue-specific genes, which provides a valuable gene sequence resource for future genomics and functional studies. Furthermore, we identified 4,068 simple sequence repeats (SSRs) and 3,073 single nucleotide polymorphisms (SNPs) in the melon EST collection. Finally, we obtained a total of 1,382 melon full-length transcripts through the analysis of full-length enriched cDNA clones that were sequenced from both ends. Analysis of these full-length transcripts indicated that sizes of melon 5' and 3' UTRs were similar to those of tomato, but longer than many other dicot plants. Codon usages of melon full-length transcripts were largely similar to those of Arabidopsis coding sequences. CONCLUSION: The collection of melon ESTs generated from full-length enriched and standard cDNA libraries is expected to play significant roles in annotating the melon genome. The ESTs and associated analysis results will be useful resources for gene discovery, functional analysis, marker-assisted breeding of melon and closely related species, comparative genomic studies and for gaining insights into gene expression patterns.


Subject(s)
Cucumis melo/genetics , Expressed Sequence Tags , Gene Library , Gene Expression Profiling , Genetic Markers/genetics , Genome, Plant/genetics , Genomics , Organ Specificity , Quality Control , Sequence Analysis, DNA
3.
PLoS One ; 6(4): e18445, 2011 Apr 13.
Article in English | MEDLINE | ID: mdl-21533245

ABSTRACT

BACKGROUND: In the genome era, characterizing the structure and the function of RNA molecules remains a major challenge. Alternative transcripts and non-protein-coding genes are poorly recognized by the current genome-annotation algorithms and efficient tools are needed to isolate the less-abundant or stable RNAs. RESULTS: A universal RNA-tagging method using the T4 RNA ligase 2 and special adapters is reported. Based on this system, protocols for RACE PCR and full-length cDNA library construction have been developed. The RNA tagging conditions were thoroughly optimized and compared to previous methods by using a biochemical oligonucleotide tagging assay and RACE PCRs on a range of transcripts. In addition, two large-scale full-length cDNA inventories relying on this method are presented. CONCLUSION: The RNA Captor is a straightforward and accessible protocol. The sensitivity of this approach was shown to be higher compared to previous methods, and applicable on messenger RNAs, non-protein-coding RNAs, transcription-start sites and microRNA-directed cleavage sites of transcripts. This strategy could also be used to study other classes of RNA and in deep sequencing experiments.


Subject(s)
Polymerase Chain Reaction/methods , RNA/chemistry , Sequence Analysis, RNA/methods , DNA, Complementary , RNA Ligase (ATP)/metabolism , Viral Proteins/metabolism
4.
Nature ; 449(7161): 463-7, 2007 Sep 27.
Article in English | MEDLINE | ID: mdl-17721507

ABSTRACT

The analysis of the first plant genomes provided unexpected evidence for genome duplication events in species that had previously been considered as true diploids on the basis of their genetics. These polyploidization events may have had important consequences in plant evolution, in particular for species radiation and adaptation and for the modulation of functional capacities. Here we report a high-quality draft of the genome sequence of grapevine (Vitis vinifera) obtained from a highly homozygous genotype. The draft sequence of the grapevine genome is the fourth one produced so far for flowering plants, the second for a woody species and the first for a fruit crop (cultivated for both fruit and beverage). Grapevine was selected because of its important place in the cultural heritage of humanity beginning during the Neolithic period. Several large expansions of gene families with roles in aromatic features are observed. The grapevine genome has not undergone recent genome duplication, thus enabling the discovery of ancestral traits and features of the genetic organization of flowering plants. This analysis reveals the contribution of three ancestral genomes to the grapevine haploid content. This ancestral arrangement is common to many dicotyledonous plants but is absent from the genome of rice, which is a monocotyledon. Furthermore, we explain the chronology of previously described whole-genome duplication events in the evolution of flowering plants.


Subject(s)
Evolution, Molecular , Genome, Plant/genetics , Polyploidy , Vitis/classification , Vitis/genetics , Arabidopsis/genetics , DNA, Intergenic/genetics , Exons/genetics , Genes, Plant/genetics , Introns/genetics , Karyotyping , MicroRNAs/genetics , Molecular Sequence Data , Oryza/genetics , Populus/genetics , RNA, Plant/genetics , RNA, Transfer/genetics , Sequence Analysis, DNA
5.
Plant J ; 51(6): 1116-25, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17651368

ABSTRACT

Scanning DNA sequences for mutations and polymorphisms has become one of the most challenging, often expensive and time-consuming obstacles in many molecular genetic applications, including reverse genetic and clinical diagnostic applications. Enzymatic mutation detection methods are based on the cleavage of heteroduplex DNA at the mismatch sites. These methods are often limited by the availability of a mismatch-specific endonuclease, their sensitivity in detecting one allele in a pool of DNA and their costs. Here, we present detailed biochemical analysis of five Arabidopsis putative mismatch-specific endonucleases. One of them, ENDO1, is presented as the first endonuclease that recognizes and cleaves all types of mismatches with high efficiency. We report on a very simple protocol for the expression and purification of ENDO1. The ENDO1 system could be exploited in a wide range of mutation diagnostic tools. In particular, we report the use of ENDO1 for discovery of point mutations in the gibberellin 3beta-hydrolase gene of Pisum sativum. Twenty-one independent mutants were isolated, five of these were characterized and two new mutations affecting internodes length were identified. To further evaluate the quality of the mutant population we screened for mutations in four other genes and identified 5-21 new alleles per target. Based on the frequency of the obtained alleles we concluded that the pea population described here would be suitable for use in a large reverse-genetics project.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/enzymology , Deoxyribonucleases/physiology , Endonucleases/physiology , Mixed Function Oxygenases/genetics , Pisum sativum/genetics , Plant Proteins/genetics , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis Proteins/classification , Arabidopsis Proteins/metabolism , Deoxyribonucleases/metabolism , Endonucleases/classification , Endonucleases/metabolism , Molecular Sequence Data , Phylogeny , Point Mutation , Sequence Alignment , Sequence Analysis, DNA/methods
6.
Plant J ; 48(3): 452-62, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17026540

ABSTRACT

The characterization of natural recessive resistance genes and virus-resistant mutants of Arabidopsis have implicated translation initiation factors of the 4E family [eIF4E and eIF(iso)4E] as susceptibility factors required for virus multiplication and resistance expression. To date, viruses controlled by these genes mainly belong to the family Potyviridae. Melon necrotic spot virus (MNSV) belongs to the family Tombusviridae (genus Carmovirus) and is an uncapped and non-polyadenylated RNA virus. In melon, nsv-mediated resistance is a natural source of recessive resistance against all strains of MNSV except MNSV-264. Analyses of chimeras between non-resistance-breaking and resistance-breaking strains have shown that the avirulence determinant maps to the 3'-untranslated region (3'-UTR) of the viral genome. Using a combination of positional cloning and microsynteny analysis between Arabidopsis thaliana and melon, we genetically and physically delimited the nsv locus to a single bacterial artificial chromosome clone and identified the melon eukaryotic translation initiation factor 4E (Cm-eIF4E) as a candidate gene. Complementation analysis using a biolistic transient expression assay, confirmed Cm-eIF4E as the product of nsv. A single amino acid change at position 228 of the protein led to the resistance to MNSV. Protein expression and cap-binding analysis showed that Cm-eIF4E encoded by a resistant plant was not affected in it's cap-binding activity. The Agrobacterium-mediated transient expression of the susceptibility allele of Cm-eIF4E in Nicotiana benthamiana enhanced MNSV-264 accumulation. Based on these results, a model to explain melon resistance to MNSV is proposed. These data, and data from other authors, suggest that translation initiation factors of the eIF4E family are universal determinants of plant susceptibility to RNA viruses.


Subject(s)
Alleles , Cucurbitaceae/genetics , Eukaryotic Initiation Factor-4E/genetics , RNA Viruses/physiology , RNA, Messenger/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Base Sequence , Chromosomes, Plant , Cloning, Molecular , Cucurbitaceae/virology , DNA Primers , Molecular Sequence Data , RNA Caps , Sequence Homology, Amino Acid
7.
Genome Res ; 14(3): 406-13, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14993207

ABSTRACT

To evaluate the existing annotation of the Arabidopsis genome further, we generated a collection of evolutionary conserved regions (ecores) between Arabidopsis and rice. The ecore analysis provides evidence that the gene catalog of Arabidopsis is not yet complete, and that a number of these annotations require re-examination. To improve the Arabidopsis genome annotation further, we used a novel "full-length" enriched cDNA collection prepared from several tissues. An additional 1931 genes were covered by new "full-length" cDNA sequences, raising the number of annotated genes with a corresponding "full-length" cDNA sequence to about 14,000. Detailed comparisons between these "full-length" cDNA sequences and annotated genes show that this resource is very helpful in determining the correct structure of genes, in particular, those not yet supported by "full-length" cDNAs. In addition, a total of 326 genomic regions not included previously in the Arabidopsis genome annotation were detected by this cDNA resource, providing clues for new gene discovery. Because, as expected, the two data sets only partially overlap, their combination produces very useful information for improving the Arabidopsis genome annotation.


Subject(s)
Arabidopsis/genetics , DNA, Complementary/genetics , Genome, Plant , Conserved Sequence/genetics , DNA, Plant/genetics , Databases, Genetic , Evolution, Molecular , Genes, Plant/genetics , Genomics/methods , Models, Genetic , Oryza/genetics
8.
Nucleic Acids Res ; 32(1): e6, 2004 Jan 02.
Article in English | MEDLINE | ID: mdl-14704363

ABSTRACT

Second-strand cDNA priming is a central problem for full-length characterization of transcripts. A new strategy using bacteriophage T4 DNA ligase and partially degenerate adapters is proposed for grafting a sequence tag to the end of polyribonucleotides. Based on this RNA tagging system and previously described protocols, a new method for full-length cDNA production has been implemented. Validation of the method is shown in Arabidopsis thaliana by the construction of a full-length cDNA library and the analysis of 154 clones and by 5'-RACE-PCR run on a documented experimental system.


Subject(s)
Cloning, Molecular/methods , DNA Ligases/metabolism , DNA, Complementary/biosynthesis , DNA, Complementary/genetics , Gene Library , RNA, Messenger/metabolism , Arabidopsis/genetics , Base Sequence , DNA, Complementary/analysis , Molecular Sequence Data , RNA, Messenger/genetics , RNA, Plant/genetics , RNA, Plant/metabolism , Reproducibility of Results , Transcription Initiation Site
9.
Microbiology (Reading) ; 145 ( Pt 4): 845-853, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10220164

ABSTRACT

Homoserine kinase, the product of the thrB gene, catalyses an obligatory step of threonine biosynthesis. In Pseudomonas aeruginosa, unlike Escherichia coli, inactivation of the previously identified thrB gene does not result in threonine auxotrophy. A new gene, named thrH, was isolated that, when expressed in E. coli thrB mutant strains, results in complementation of the mutant phenotype. In P. aeruginosa, threonine auxotrophy is observed only when both thrB and thrH are simultaneously inactivated. Thus, thrH encodes a protein with an in vivo homoserine-kinase-like activity. Surprisingly, thrH overexpression allows complementation of serine auxotrophy of E. coli and P. aeruginosa serB mutants. These mutants are affected in the phosphoserine phosphatase protein, an enzyme involved in serine biosynthesis. Comparison analysis revealed sequence homology between ThrH and the SerB proteins from different organisms. This could explain the in vivo phosphoserine phosphatase activity of ThrH when overproduced. ThrH differs from the protein encoded by the serB gene which was identified in P. aeruginosa. Thus, two SerB-like proteins co-exist in P. aeruginosa, a situation also found in Mycobacterium tuberculosis.


Subject(s)
Bacterial Proteins , Isoenzymes/metabolism , Phosphoric Monoester Hydrolases/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Pseudomonas aeruginosa/enzymology , Threonine/biosynthesis , Amino Acid Sequence , Escherichia coli/genetics , Escherichia coli/metabolism , Genes, Bacterial , Genetic Complementation Test , Isoenzymes/chemistry , Isoenzymes/genetics , Molecular Sequence Data , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/genetics , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Phosphotransferases (Alcohol Group Acceptor)/genetics , Plasmids/genetics , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/growth & development , Sequence Alignment , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...